INTERNATIONAL STANDARD

Second edition 2013-10-01

Metallic materials — Conversion of hardness values

Matériaux métalliques — Conversion des valeurs de dureté

Reference number ISO 18265:2013(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Fore	reword	iv
Intr	roduction	v
1	Scope	
2	Principles of conversion	
3	Application of conversion tables3.1General3.2Converting values3.3Designation of conversion results3.4Notes on use of conversion tables	
Ann	nex A (informative) Conversion table for unalloyed, low alloy steels and cast st	eel12
Ann	nex B (informative) Conversion tables for steels for quenching and tempering	
Ann	nex C (informative) Conversion tables for steels for cold working	
Ann	nex D (informative) Conversion tables for high speed steels	
	nex E (informative) Conversion tables for hardmetals	
	nex F (informative) Conversion tables for non-ferrous metals and alloys	
Ann	nex G (informative) Conversion tables for tool steels	
	nex H (informative) Remarks on the effect of the changed test conditions	
	oliography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 3, *Hardness testing*.

This second edition cancels and replaces the first edition (ISO 18265:2003) which has been technically revised.

Introduction

The hardness conversion values given in <u>Table A.1</u> were obtained in interlaboratory tests by the *Verein Deutscher Eisenhüttenleute* (VDEh) (German Iron and Steel Institute) using verified and calibrated hardness testing machines. Statistically reliable information cannot be given on the uncertainty of these values because the test conditions were not reproducible, and the number of results used to calculate the mean hardness values is not known. The conversion values in this table are in accordance with the information presented in IC No. 3 (1980) and IC No. 4 (1982) of the European Coal and Steel Community, as well as in ISO 4964:1984 and ISO/TR 10108:1989.

Annexes C, D and E contain – in a revised format – the extensive results on the conversion of hardness values presented in TGL 43212/02 to 43212/04, standards published by the former East German standards body, the *Amt für Standardisierung, Meßwesen und Warenprüfung* (ASMW). The values presented in <u>Annex B</u> had also been determined by the ASMW, but were published in a report of the *Physikalisch-Technische Bundesanstalt* (PTB),^[1] the German national institute for science and technology, not in a TGL standard.

The converted hardness values in the above-mentioned TGL standards were obtained in statistically reliable hardness and tensile tests. The hardness tests were performed using ASMW normal testing machines on plane-parallel, polished specimens of various materials in different heat treatment conditions. Tensile strength was tested on machines whose force measuring and extension measuring systems had been calibrated immediately before testing. The tensile test method used is equivalent to that specified in ISO 6892-1, and the calibration procedures conform with those specified in ISO 7500-1 and ISO 9513.

<u>Annex G</u> contains the results on the conversion of hardness values of two tool steels with the assistance of the *Verein Deutscher Eisenhüttenleute* (VDEh) which were obtained in the year 2007.

Users of this International Standard should take note of <u>Clause 2</u>, especially the concluding warning.

Metallic materials — Conversion of hardness values

1 Scope

This International Standard specifies the principles of the conversion of hardness values to equivalent values in other hardness scales and to estimates of tensile strength. It gives general information on the use of the conversion tables.

The conversion tables in <u>Annexes A</u> to <u>G</u> apply to

- unalloyed and low alloy steels and cast steel,
- steels for quenching and tempering,
- steels for cold working,
- high speed steels,
- tool steels,
- hardmetals, and
- non-ferrous metals and alloys.

NOTE 1 The conversion tables in <u>Annexes B</u> to <u>G</u> are based on empirical results which were evaluated by means of regression analysis. Such analysis was not possible in the case of the values given in <u>Annex A</u> because a sufficient number of results was not available.

NOTE 2 Annex H gives information about the effects of changes of the test procedure in the standards specifying the hardness tests.

Converted values obtained using this International Standard are only directly applicable to the exact material tested. For all other materials, they provide an indicator only. In all cases, the converted values are not intended as replacements for values obtained by the correct standard method. In particular, tensile strength estimates are the least reliable converted values in this International Standard.

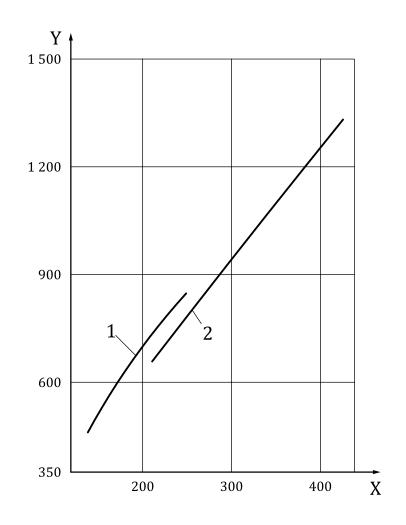
Sections of this International Standard are reprinted, with permission of ASTM International, from ASTM E140 Standard Hardness Conversion Tables for Metals Relationship among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Harness, Knoop Hardness, and Scleroscope Hardness.

2 Principles of conversion

Hardness testing is a form of materials testing that provides information on the mechanical properties of a material with limited destruction of the specimen and within a relatively short period of time. In practice, it is often desirable to use hardness results to draw conclusions on the tensile strength of the same material if tensile testing is too involved or the piece to be examined is not to be destroyed.

Since the means of loading in hardness testing is considerably different from that in tensile testing, it is not possible to derive a reliable functional relationship between these two characteristic values on the basis of a model. Nevertheless, hardness values and tensile strength values are positively correlated, and so it is possible to draw up empirical relationships for limited applications.

Often it is necessary to check a given hardness value against a value gained by a different test method. This is especially the case if only a certain method can be used due to the particular specimen or coating thickness, the size of the object to be tested, surface quality, or the availability of hardness testing machines.


Conversion of hardness values to tensile values makes it possible to carry out hardness measurement in place of the measurement of tensile strength taking into account that these tensile strength values must be seen as being the least reliable form of conversion. Likewise, with conversion between hardness scales, a hardness value can be replaced with a value obtained using the desired method.

Sometimes a conversion relationship is drawn on a single-case basis to gain information on properties other than hardness, most often to obtain a good estimate of tensile strength. Special relationships are sometimes drawn for hardness-to-hardness conversions. This may be done as long as the following conditions are fulfilled.

- The hardness test method used is only employed internally, and the results obtained will not be compared with those of other methods, or the details of the test procedure are defined precisely enough so that results can be reproduced by another laboratory or at another time.
- The conversion tables used shall have been derived from a sufficiently large number of parallel experiments using both scales and carried out on the material in question.
- Converted results are to be expressed in such a manner that it is clear which method was used to
 determine the original hardness value.

However, the conversion values in this International Standard are informative only. A measurement made according to the correct hardness (or tensile) standard for the scale being reported shall always take precedence over a hardness (or strength) value derived from a conversion table within this International Standard. Similarly, a value derived by conversion shall not provide sufficient grounds either for a complaint or for proof of meeting an acceptance criterion.

WARNING — In practice, an attempt is often made to establish a strong relationship between the original and converted values without taking the characteristics of the material under test into consideration. As <u>Figures 1</u> and <u>2</u> show, this is not possible. Therefore, users of this International Standard should ensure that all conditions for conversion are met (see also References [2] and [3]).

Key

- X Hardness HV 30
- Y Tensile strength, *R*_m in MPa
- 1 untreated, soft annealed, normalized
- 2 quenched and tempered

Figure 1 — HV 30/ R_m curves for quenching and tempering steels in various heat treatment conditions

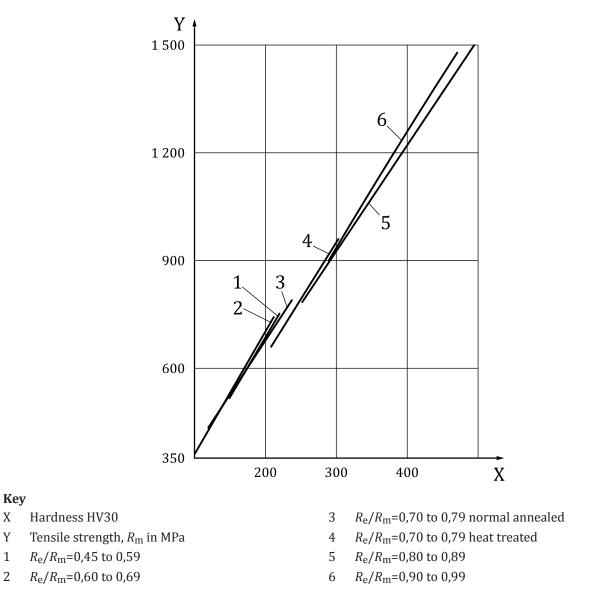


Figure 2 — Mean HV 30/ R_m curves for quenching and tempering steels with different R_e/R_m ratios

Application of conversion tables 3

3.1 General

Х Y

1 2

Conversion from one hardness value to another or from a hardness value to a tensile strength value involves uncertainties which must be taken into account. Extensive investigations have shown that it is not possible to establish universally applicable conversion relationships between hardness values obtained by different methods, no matter how carefully the tests had been carried out. This lies in the fact that there is a complex relationship between the indentation behaviour of a material and its elastic and plastic deformation. For this reason, the given conversion relationship provides greater equivalency the more similarity there is between the elasticity of the tested material and that of the material used to establish the relationship. Likewise, a better equivalency can be expected for methods with similar indentation processes (i.e. where the differences in the force application-indentation procedures and the test parameters is minimal). Therefore, conversion from hardness values to tensile values must be seen as being the least reliable form of conversion.

NOTE In many cases, the yield strength or the 0,2 % proof strength provides information on the elastic behaviour of a material.

Measurement best practice shall be defined by the hardness test adopted.

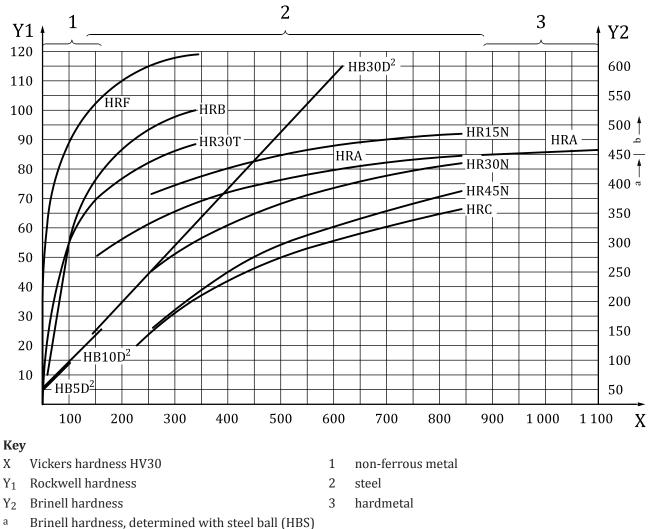
It should be noted that each hardness determination is only applicable to the immediate area of the indentation. Where hardness varies, e.g. at an increasing distance from the surface, Brinell or Vickers hardness values, or even tensile strength values can deviate from the converted values solely as a result of the different rate of elongation within the area under consideration. Different geometry indentations are affected differently by these effects and so conversions from one hardness scale to another may no longer be consistent even in the same sample.

Hardness values shall only be converted when the prescribed test method cannot be used, for example because a suitable machine is not available, or if the required samples cannot be taken. A suitable test method can be selected with the aid of Figures 3 and 4.

Converted values shall not be used as the basis for proof of compliance (or not) to a specification or contract (any necessary exceptions therefore require specific agreement between the parties concerned).

If hardness or tensile strength values are determined by conversion in accordance with this International Standard, this shall be stated, as shall the hardness test method (ISO 6506-1, ISO 6507-1, ISO 6508-1) used.

The basis of conversion shall be the mean of at least three individual hardness values.

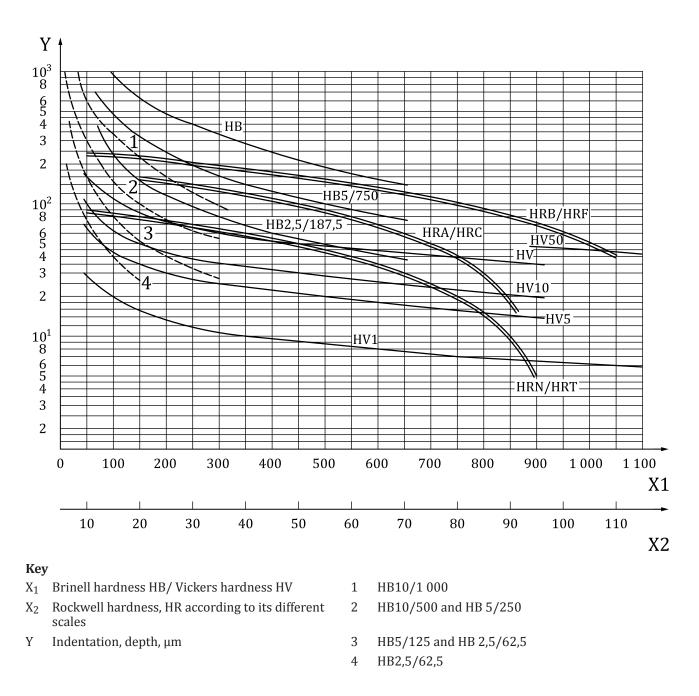

To ensure an acceptable uncertainty of measurement, the specimen surfaces shall be sufficiently smooth; depending on the hardness test method and the test force a suitable method of surface preparation has to be selected, e.g. machine-finishing (for macro hardness) up to polishing (for low-force and micro hardness).

The uncertainties of the values given in the conversion tables here comprise the confidence interval of the hardness conversion curves calculated by means of regression analysis, and the uncertainty of the hardness or tensile strength value to be converted. The confidence interval of the regression function is a parameter that cannot be influenced by the user and is calculated as a function of hardness.

The uncertainty associated with the hardness values to be converted is influenced by the repeatability of the testing machine, the quality of the specimen surface, the uniformity of the specimen's hardness, and the number of indentations used to determine hardness. It is thus dependent on the test conditions of the person doing the conversion. This conversion is to be carried out on the basis of the tables given in this International Standard for various groups of materials. These tables give hardness values for various scales and, in some cases, the relevant tensile strength.

When only comparing the values in these tables without actually carrying out hardness testing, the uncertainty of the converted value is reduced to the confidence interval of the calculated hardness conversion curve. When using the tables, it is not significant which value is taken as the measured value and which as the converted one.

The determination of the uncertainty of converted values, as well as the specification of a permissible level of uncertainty may be agreed, in which case the converted values are to be established on the basis of the mean of five individual values.



- brinell hardness, determined with steel ball (HbS)
 Brinell hardness, determined with hardmetal ball
- (HBW)

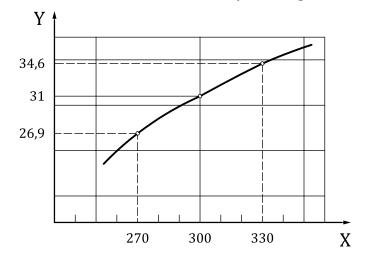
This figure is intended only as an aid in selecting an alternative test method and is not to be used for conversion purposes.

NOTE The designation "HB5D²" corresponds to the force-diameter ratio according to ISO 6506-1.

Figure 3 — Various hardness scales compared to the Vickers scale

Figure 4 — Indentation depth as a function of hardness for various test methods

3.2 Converting values


3.2.1 Limits of error

Depending on the measurement conditions in practice, measured value/converted value pairs (e.g. HV/HRC, HRC/HV, HRA/HRN, HB/ R_m) can be taken from the tables in <u>Annexes A</u> to <u>G</u>. Essential criteria which should be taken into account when selecting a hardness test method are discussed in this clause.

The example below illustrates the conversion of values together with their limits of error using Table C.2.

Given hardness value:	(300 ± 30) HV
Desired scale:	HRC
Converted values from table:	$270 \text{ HV} \triangleq 26,9 \text{ HRC}$
	300 HV \triangleq 31,0 HRC
	330 HV ≙ 34,6 HRC

The converted value, $31^{+3,6}_{-4,1}$ HRC, for the nominal value 300 HV no longer represents the mean of the upper and lower limits in HRC because of the nonlinear relationship between HV and HRC values (see Figure 5). The confidence interval of the hardness conversion curve may be disregarded for such estimations.

Кеу

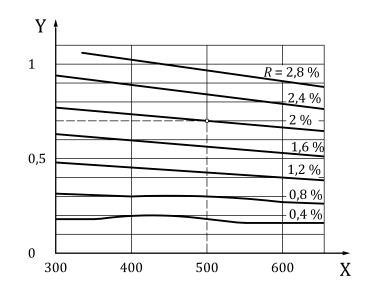
X HV 30

Y HRC

Figure 5 — Shift of the nominal value when converting hardness values

3.2.2 Uncertainty

The uncertainty of a converted value should be taken from the curves associated with the conversion table used, as shown in the figures in <u>Annexes B</u> to <u>E</u> for various types of material.


The families of curves given in the annexes represent the uncertainty, *u*, for a probability level of 95 % as a function of the hardness value $\bar{H}_{\rm K}$ for various reproducibility limits, *R*. ($\bar{H}_{\rm K}$ is the corrected arithmetic mean of five individual values.) The curves have been arranged so that interpolation between neighboring curves is possible. The reproducibility, *R*, is to be calculated on the basis of five measurements as shown in <u>3.4.2</u> for various hardness test methods.

The uncertainty curves only take account of the effects of the random errors of the measured value on the converted value. However, they do not take account of the systematic error of the testing machine used, as this can lead to exceedingly high errors in the converted result, even if the systematic error lies within the permissible range specified for the machine; this is explained in <u>3.4</u>. For this reason, hardness testing machines are to be verified, using calibrated blocks, at least within the time interval specified in the relevant standards. The systematic error determined in this manner is to be compensated by correcting the measured mean hardness value. This is especially important in the case of Rockwell

hardness testing. Figure 6 illustrates the determination of the uncertainty, *u*, of a converted hardness value (dashed line) according to the example below.

EXAMPLE

—	Measured, corrected mean hardness $ {ar H}_{ m K} $	500 HV
_	Converted value as in <u>Annex C</u>	49,5 HRC
_	Calculated reproducibility limit, R	2,0 %
_	Uncertainty of converted value, <i>u</i>	± 0,7 HRC

Key

 $X = \overline{H}_{K}$ in HV 30

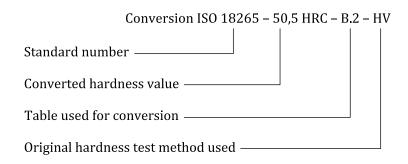

Y *u* in HRC

Figure 6 — Determining uncertainty of a converted hardness value (example)

3.3 Designation of conversion results

Conversion results shall be reported in a manner that clearly indicates which method was used to determine the original hardness value. In addition, the relevant annex to this International Standard or the table used shall be given.

EXAMPLE 1

ISO 18265:2013(E)

EXAMPLE 2 If it is agreed that the uncertainty of the converted value is to be given, this is included in the result as follows:

	Conversion ISO 18265 – (60,2 ±1,0) HRC – C.2 – HV 30
	Standard number
	Converted hardness value, with uncertainty —
	Table used for conversion
	Original hardness test method used —
EXAMPLE 3	Conversions into tensile strength values are expressed as follows:
	Conversion ISO 18265 – 415 MPa – A.1 – HB
	Standard number
	Converted tensile strength value
	Table used for conversion
	Original hardness test method used ————————————————————————————————————

3.4 Notes on use of conversion tables

3.4.1 Selection of alternative hardness test methods

3.4.1.1 In Figure 3, hardness scales for non-ferrous metals, hardmetals and selected steels are compared. The relationship of each scale to the Vickers scale is illustrated, and by comparison with Rockwell and Brinell scales (y-axes), information is gained as to the hardness ranges covered by each method. This figure is intended solely as an aid to selection and is not to be used for conversion purposes.

3.4.1.2 Figure 4 shows indentation depths as a function of hardness for various test methods. This should facilitate selection of a suitable test method on the basis of specimen or coating thickness.

3.4.1.3 Another criterion for selecting an alternative hardness test method is the uncertainty of the conversion results. Since this can vary greatly, the uncertainty curves given in this International Standard should also be used to determine which combination of methods is optimal for the application in question.

3.4.2 Calculating the reproducibility limit, R

The reproducibility limit, *R*, expressed as a percentage, is to be calculated for the different hardness test methods as shown in Equations (1) to (3).

For HRB and HRF testing:

$$R = \frac{H_{\text{max}} - H_{\text{min}}}{130 - \overline{H}} \times 100 \tag{1}$$

For HRC, HRA, HRD, HRN and HRT testing:

$$R = \frac{H_{\max} - H_{\min}}{100 - \bar{H}} \times 100$$
 (2)

where

 H_{max} , H_{min} are the highest and lowest measured hardness values;

 \overline{H} is the mean of measured hardness values.

For HV, Vickers microhardness, and HB testing:

$$R = \frac{d_{\text{max}} - d_{\text{min}}}{\overline{d}} \times 100 \tag{3}$$

where

*d*_{max}, *d*_{min} are the largest and smallest measured indentation diagonals (Vickers) or the largest and smallest diameters (Brinell);

 \overline{d} is the mean of measured diagonals or diameters.

3.4.3 Effect of the systematic error

The effect of systematic errors of hardness values on conversion results is illustrated in the following example.

EXAMPLE According to <u>Table E.2</u>, a hardness value of 87,8 HRA corresponds to a converted value of 1 180 HV 50. In this hardness range, the limits of error of the testing machines (see ISO 6508-2 and ISO 6507-2) are \pm 1,5 HRA and \pm 23,6 HV 50, respectively (i.e. \pm 2 % of the hardness value). A systematic error of a Rockwell testing machine of +1,4 HRA lies within the permissible limits of error, although this still would lead to a deviation of 130 HV 50 for the converted value if no correction is made before conversion. Deviations of this magnitude occur particularly when converting from Rockwell to Vickers or Brinell values.

Annex A

(informative)

Conversion table for unalloyed, low alloy steels and cast steel

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

The values in this table are considered to be estimates for indication only. The hardness values lie outside the defined conditions of the relevant hardness test standard. The tensile strength values were not obtained under reproducible conditions and it is now impossible to determine the uncertainty of the data.

A.1 Hardness-to-hardness conversion

When considering the confidence level of converted hardness values, the uncertainty of the hardness test method as well as the width of the conversion scatterband must be taken into account, as shown in Figure A.1. Curve *a* characterizes the mean conversion relationship upon which the values given in this Annex are based. Curves b_1 and b_2 delineate the areas on either side of *a* which take into consideration the different elasticities of the steels tested. In an ideal conversion, the hardness value x_0 becomes y_0 . Taking account of the scatterband between b_1 and b_2 , practically every hardness value between y_{01} and y_{02} is obtainable. It should be borne in mind that, because the hardness value x_0 is associated with the uncertainty of the relevant test method, the actual hardness can fluctuate between x_1 and x_2 and thus the converted value will lie between y_{11} and y_{22} .

NOTE In the interlaboratory tests carried out by the VDEh (see the Introduction), the evaluation of about 700 results for the conversion between HV10 values and HB values produced (graphically depicted) scatterband widths of ±24 HV10 and ±23 HB, respectively. Regression analysis was not performed.

A.2 Hardness-to-tensile-strength conversion

While hardness-to-hardness conversion involves considerable scatter and systematic errors, conversion of hardness to tensile strength values produces even greater scattering. One reason for this is that a great uncertainty can be affected by microstructural changes (e.g. resulting from heat treatment or cold working) within even the same type of steel.

The tensile strength values given in <u>Table A.1</u> are therefore only approximate values which cannot take the place of the results of tensile testing.

NOTE 1 In the interlaboratory tests carried out by the VDEh (see Introduction), the evaluation of about 700 results for the conversion from HV10 values to tensile strength values produced (graphically depicted) scatterband widths of \pm 25 HV10 and \pm 85 N/mm², respectively. It was also shown that systematic deviations from the mean were possible for particular steel groups. For instance, for pearlitic steels within the hardness range of 300 HV10 to 500 HV10, it was found that the converted tensile values were, on the average, about 100 MPa higher than those listed in Table A.1. Regression analysis was not performed.

NOTE 2 Since high-strength structural steels are now being tested at an increasing rate, the tensile strengths in <u>Table A.1</u> were extended up to 2 180 MPa. The tensile strength values in this table are based on results of extensive interlaboratory tests by the VDEh in the hardness range up to about 420 HV10, and on the results from Reference [4] which are gradually approached by the values in the range above 420 HV10.

Tensile	Vickers	www、 Brinell		们好初的呀		Rockwell				
	hardness	hardness						1		
MPa	HV10	HB a	HRB	HRF	HRC	HRA	HRD	HR15N	HR30N	HR45N
255	80	76,0								
270	85	80,7	41,0							
285	90	85,5	48,0	82,6						
305	95	90,2	52,0							
320	100	95,0	56,2	87,0						
335	105	99,8	, e e • • •							
350	110	105	62,3	90,5						
370	115	109	/ • • • • • •							
385	120	114	667	93,6		•••				
400	125	119	•••		• • • • • • • • • • •	• • • • • • • • • . • • • • • • .				
415	130	124	71,2	96,4	••••	• • • • • • • • • • • • • • • • • • •				
430	135	128 - • •			••••	• • • • • • • / • • • • • •				
450	140	, 133 • '	75.0	99,0	, • , •	• • • • • • • • • • • • <i>•</i>				
465	145	138	• • • • • • • • • •		, 	• • • • • ′ • •				
480	150	1 43	787	101,4	, 	•				
495	155	•• <u>1</u> 47			-	••			•	
510	160	<u>152</u>	81.7	103,6		· • • • •		• • • •	• • • * •	
530	165	156		, , , , , , , , , , , , , , , , , , ,		· • • • • •	•	• • • • • • • • • • • • • • • • • • •	-	
545	170	162	85.0	105 5		· • • • • • • • • • • • • • • • • • • •	• •			
560	175	166	••••	•••••		••	* • • •		• `	
575	180	171	87,1	107;2						
595	185	176	•••	•••						
610	190	181	89,5	108,7						
625	195	185								
640	200	190	91,5	110,1						
660	205	195	92,5							
675	210	199	93,5	111,3						
690	215	204	94,0							
705	220	209	95,0	112,4						
720	225	214	96,0							

Table A.1 — Conversion of hardness-to-hardness or hardness-to-tensile-strength values for unalloyed and low alloy steels and cast steel 碳钢、低合金钢和铸钢的硬度-硬度、硬度-抗拉强度换算值

^a Brinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 The value of the tension test are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

Tensile strength	Vickers hardness	Brinell hardness				Rockwell	hardnes	5		
MPa	HV10	HB a	HRB	HRF	HRC	HRA	HRD	HR15N	HR30N	HR45N
740	230	219	96,7	113,4						
755	235	223								
770	240	228	98,1	114,3	20,3	60,7	40,3	69,6	41,7	19,9
785	245	233			21,3	61,2	41,1	70,1	42,5	21,1
800	250	238	99,5	115,1	22,2	61,6	41,7	70,6	43,4	22,2
820	255	242	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • . • • • .	23,1	62,0	42,2	71,1	44,2	23,2
835	260	247	(101)		24,0	62,4	43,1	71,6	45,0	24,3
850	265	252	• • • • • •		24,8	62,7	43,7	72,1	45,7	25,2
865	270	257	(102)		25,6	63,1	44,3	72,6	46,4	26,2
880	275	261	• • • •		26,4	63,5	44,9	73,0	47,2	27,1
900	280	266	(104)		27,1	63 <u>,</u> 8	45,3	73,4	47,8	27,9
915	285	271 _,	• • • • • • • • • • • • • • • • • • •		27,8	642	46,0	73,8	48,4	28,7
930	290	- 276	(105)		28,5	64,5	46,5	74,2	49,0	29,5
950	295	280	• • • • • • • • • • • • • • • • • • • •	• •	29.2	• 64,8	47,1	74,6	49,7	30,4
965	300	285	• • • • • • • • • • • • • •		29,8	65,2	47,5	74,9	50,2	31,1
995	310	295	• • • • • • • • • • • • • •		• 31,0	65,8	48,4	75,6	51,3	32,5
1 030	<u> 320</u>	. 304	• • • • • • • • • • • • • •		32,2	664	49,4	76,2	52,3	33,9
1 060	330	••314	• • • • • • •	, . 	33,3	67,0	50,2	76 ,8	53,6	35,2
1 095	340	•••323	` • • • • •	, 	34,4 (67,6	51,1	774	54,4	36,5
1 125	350	333	• • . • • • . • • • • .	, 	35,5	68,1	51,9	78,0	55,4	37,8
1 155	360	342	• • • • • • • • • • • • • • • • • • •	• • • • / • • • •	36,6	68,7	52,8	•78,6	56,4	39,1
1 190	370	352	· • • • • • • • • • • • • • • • • • • •	• • * • • • ·	37,7	69,2	53,6	79,2	57,4	40,4
1 220	380	361	` •••	•	38,8	69,8	54,4	79,8	58,4	41,7
1 255	390	371	ì		39,8	70,3	55,3	80,3	59,3	42,9
1 290	400	380			40,8	70,8	56,0	80,8	60,2	44,1
1 320	410	390			41,8	71,4	56,8	81,4	61,1	45,3
1 350	420	399			42,7	71,8	57,5	81,8	61,9	46,4
1 385	430	409			43,6	72,3	58,2	82,3	62,7	47,4
1 420	440	418			44,5	72,8	58,8	82,8	63,5	48,4
1 455	450	428			45,3	73,3	59,4	83,2	64,3	49,4

Table A.1 (continued)

^a Brinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 The value of the tension test are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

Tensile strength	Vickers hardness	Brinell hardness]	Rockwell	hardnes	S		
MPa	HV10	HB a	HRB	HRF	HRC	HRA	HRD	HR15N	HR30N	HR45N
1 485	460	437			46,1	73,6	60,1	83,6	64,9	50,4
1 520	470	447			46,9	74,1	60,7	83,9	65,7	51,3
1 555	480	456			47,7	74,5	61,3	84,3	66,4	52,2
1 595	490	466			48,4	74,9	61,6	84,7	67,1	53,1
1 630	500	475		, , , , , , , , , , , , , , , , , , ,	49,1	75,3	62,2	85,0	67,7	53,9
1 665	510	485			49,8	75,7	62,9	85,4	68,3	54,7
1 700	520	494	, 		50,5	76,1	63,5	85,7	69,0	55,6
1 740	530	504	• • • • • • • • • • • - • • • • • •	· · · · · · · · · · · · · · · · · · ·	51,1	76,4	63,9	86,0	69,5	56,2
1 775	540	513	• • • • • • / • • • • •	•••	51,7	76,7	64,4	86,3	70,0	57,0
1 810	550	523	• • • • • • • • • ′		52.3	77,0	64,8	86,6	70,5	57,8
1 845	560	532	••	••• ••••• ••••••	53,0	774	65,4	86,9	71,2	58,6
1 880	570	542	• • • • • • • • • • • • • • • • • • •		53,6	77,8	65,8	87,2	71,7	59,3
1 920	580	551			54,1	78.0	66,2	87,5	72,1	59,9
1 955	590	· 561; ,		• *	54,7	78,4	66,7	87,8	72,7	60,5
1 995	600	570	•••••		55,2	• 78,6	67,0	88,0	73,2	61,2
2 030	610	580			,55,7	78,9	67,5	88,2	73,7	61,7
2 070	620	589			56,3	79,2	67,9	88,5••	74,2	62,4
2 105	630	599			56,8	79.5	68,3	88,8	• 74,6	63,0
2 145	640	608			57,3	(79.8	68,7	89,0	² 75,1	63,5
2 180	650	618		, , , , , , , , , , , , , , , , , , ,	57,8	80,0	• 69,0	89,2	75,5	64,1
	660				58,3	80,3	69,4	89,5	75,9	64,7
	670			•••	58,8	80,6	69,8	89,7	76,4	65,3
	680			• •	59,2	80,8	70,1	89,8	76,8	65,7
	690				59,7	81,1	70,5	90,1	77,2	66,2
	700				60,1	81,3	70,8	90,3	77,6	66,7
	720				61,0	81,8	71,5	90,7	78,4	67,7
	740				61,8	82,2	72,1	91,0	79,1	68,6
	760				62,5	82,6	72,6	91,2	79,7	69,4
	780				63,3	83,0	73,3	91,5	80,4	70,2
	800				64,0	83,4	73,8	91,8	81,1	71,0

Table A.1 (continued)

^a Brinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 The value of the tension test are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

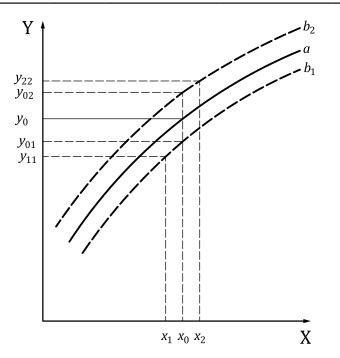

Tensile strength	Vickers hardness	Brinell hardness				Rockwell	hardnes	5		
MPa	HV10	HB a	HRB	HRF	HRC	HRA	HRD	HR15N	HR30N	HR45N
	820			***	64;7:	83,8	74,3	92,1	81,7	71,8
	840		::		65,3	. 84,1	74,8	92,3	82,2	72,2
	860		, , , , , , , , , , , , , , , , , , ,		65,9	84,4	75,3	92,5	82,7	73,1
	880				66,4	. 84,7	75,7	92,7	83,1	73,6
	900				67,0	85,0	76,1	92,9	83,6	74,2
	920					85,3	76,5	93,0	84,0	74,8
	940			· · · · · · · · · · · · · · · · · · ·	68,0	85,6	76,9	93,2	84,4	75,4

Table A.1 (continued)

^a Brinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 The value of the tension test are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

Key

X determined hardness value

Y converted value

CAUTION — There may be very large scatter bands in the conversions of different kinds of cast steel.

Figure A.1 — Scatter band for hardness-to-hardness conversion (schematic)

Annex B (informative)

Conversion tables for steels for quenching and tempering

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

The values and curves presented in this Annex are based on a report of the *Physikalisch-Technische Bundesanstalt* (PTB),^[1] the German national institute for science and technology, and are reproduced with their permission (see also the Introduction for further information).

The values in these conversion tables are based on the results of testing carried out on steels as in TGL 6547 that have been quenched and tempered. The steel grades that were tested are listed in Table B.1, which also provides an overview of the former designations used in the TGL standard along with the corresponding designations as in EN 10083-1. Tables B.2 to B.4 give conversion values for the steels in various heat treatment conditions, while Tables B.5 to B.7 give an overview of the uncertainty curves presented in Figures B.1 to B.68 which are to be used in conjunction with the conversion tables.

NOTE A useful reference book is [24]. It provides information for the comparison of different national and international steel designations with regard to their compositions.

Steel grade		Steel grade
(as in TGL 6547)	(as	s in EN 10083-1)
	Material no.	Name
C25	1.1158	C25E
C35	1.1180	C35R
CK45	1.1191	C45E
CK55 ^a	1.1203	C55E
C60	1.1223	C60R
CK67 b	С	c
24CrMoV5.5 ^a	c	c
30CrMoV9	1.7707	30CrMoV9 ^d
30Mn5	1.1165	30Mn5 ^d
34Cr4	1.7033	34Cr4
37MnSi5	1.5122	37MnSi5 ^d
38CrSi6	1.7038	37CrS4
40Cr4	1.7035	41Cr4
42CrMo4	1.7225	42CrMo4
42MnV7	1.5223	42MnV7 d
50CrV4	1.8159	51CrV4
50MnSi4	1.5131	50MnSi4 d
60CrMo4 ^a	1.7228	50CrMo4
^a Not included in TGL 6547.		
^b As in TGL 7975.		

Table B.1 — Quenching and tempering steels tested

cNot included in EN 10083-1 and in DIN 17200.

^dAccording to DIN 17200:1987-03 (withdrawn, replaced by EN 10083-1) but not included in EN 10083-1.

1117	UDW	UDC	1	钢 (调质)	-					UDDOT		D
HV	HBW	HRC	HRA	HR45N	HR30N	HR15N	HRB	HRF	HR45T	HR30T	HR15T	R _m
210	205	15,3	57,2	13,4	36,1	65,2	94,8	110,4	65,4	76,8	89,2	651
220	215	17,4	58,4	15,9	38,1	66,5	96,7	111,4	67,6	78,5	90,0	683
230	225	19,3	59,6	18,2	40,4	67,8	98,4	112,4	69,6	80,0	90,8	716
240	235	21,2	60,6	20,4	41,8	68,9	100,0	113,3	71,4	81,4	91,4	748
250	245	22,9	61,6	22,5	43,4	70,0	101,4	114,1	73,0	82,5	92,0	781
260	255	24,6	62,5	24,4	45,0	71,0	102,7	114,9	74,4	83,6	92,5	813
270	266	26,2	63,4	26,3	46,5	72,0	103,9	115,6	75,7	84,5	90,0	845
280	276	27,7	64,3	28,1	.47,9	72,9	105,0	116,2	76,9	85,4	90,8	877
290	286	29,1	65,0	29,8	493	73,7	106,0	116,8	77,9	86,1	91,4	909
300	296	30,5	65,8	31,4 ,	50,5	74,5	106,9	117,3	78,9	86,8	92,0	940
310	306	31,8	66,5	32,9	, 51,8	75,3	107,7	117,8	79,7	87,4	94,3	972
320	316	33,1	67,2	34.4	52,9	76,0	108,5	118,3	80,5	88,0	94,6	1 0 0 3
330	326	34,3	67,8	35,8	54,0	76,7••	109,2	118,8	81,2	88,4	94,8	1 035
340	336	35,4	68,5	37,2	.55,1	77,3	109,9	119,2	81,9	88,9	95,0	1 0 7 0
350	345	36,5	69,1	, 38,4	56.1	78,0	110,5	119,6	82,5	89,3	95,2	1 097
				• • • • •		••••		••				
360	355	37,6	69,6	. 29,7	• 57,1	78,6	141,1	119,9	83,0	89,6	95,4	1 1 2 8
370	365	38,6	,70,2	40.9	58,0	79,1	111,7′	120,3	83,5	89,9	95,5	1 1 5 9
380	375	39,6	• 70,7	42,0	58,9	79,7••	112,2	120,6	84,0	90,2	95,6	1 189
390	385	, 40,6	71,2	43,2	59,8	80,2	112,7	120,9	84,4	90,5	95,7	1 2 2 0
400	395	41.5	71,7	44.2	60,6	, \$0,7	113,1	121,2	84,8	90,7 ;	95,8	1 250
		•••			•			3/ • · • • •				
410	405	42,4	72,2	45,3	• 61,4• •	••• • • • • • • • • • • • • • • • • • •	113,6	• 121,5	85,1 • •	• 90.9	95,9	1 281
420	414	43,2	72,6	463`.	62.2	81,6					,-	1 311
430	424	44,1	73,0	47.2	63.0	82,1			••			1 3 4 1
440	434	44,9	73,5	48,2	• AR2•7•	82,5						1 371
450	444	45,7	73,9	49,1	• •6•4,4	82,9						1 401
430		+3,7	73,9	49,1	• • • • • • • • • • • • • • • • • • •	02,9						1401
							-					
460	453	46,4	74,3	50,0	65,1	83,3						1 430
470	463	47,2	74,6	50,8	65,8	83,7						1 460
480	473	47,9	75,0	51,7	66,4	84,1						
490	482	48,6	75,4	52,5	67,0	84,4						
500	492	49,2	75,7	53,2	67,6	84,8						
510	501	49,9	76,0	54,0	68,2	85,1						
520	511	50,5	76,4	54,8	68,8	85,4						
	tension) i		2-1:2009.				-	-	based on	close-loop	control a	t the ra

Table B.2 — Conversion of hardness-to-hardness and hardness-to-tensile-strength values for quenching and tempering steels in the quenched tempered conditions

HV	HBW	HRC	HRA	HR45N	HR30N	HR15N	HRB	HRF	HR45T	HR30T	HR15T	R _m
530	520	51,2	76,7	55,5		85,8						
540	530	51,8	77,0	56,2	69,9	86,1						
550	539	52,4	77,3	56,8	70,4	86,4						
					••••							
560	549	52,9	77,6	57,5	70,9	86,6						
570	558	53,5	77,9	58,2	71,4	86,9	,					
580	568	54,0	78,2	58, 8 ,	71,9	87,2						
590	577	54,6	78,4	59,4	72,4	87,5						
600	586	55,1		60,0	72,8	87,7		-				
610	596	55,6	78,9	60,6	73,3	88,0						
620	605	56,1	79,2	61,2	73,7	88,2		:				
630	614	56,6	79,4	61,7	74,2	88,5						
640	623	57,1	79,7	62,3	74,6							
650	632	57,5	79,9	62,8	75,0	88,9						

Table B.2 (continued)

NOTE 1 The values of the tension tests are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009.

NOTE 2 If only HV is given without a number, then most probably HV30 is meant.

Table B.3 — Conversion of hardness-to-hardness or hardness-to-tensile-strength values for quenching and tempering steels in the untreated, soft annealed or normalized conditions 调质钢 (未处理、退火或正火状态)的硬度-硬度、硬度-抗拉强度换算值

HV	HBW	HRC	HRA	HR45N	HR30N	HR15N	HRB	HRF	HR45T	HR30T	HR15T	<i>R</i> _m
140					/ • . • • • .							460
150	152	-	48,4	-	21,5	56,6	81,0	102,5	51,6	68,4	85,1	503
160	162	1,0	50,2		• 24,4	58,3	83,9	104,1	54,8	70,5	86,2	544
170	173	4,0	51,9	0.8	, 27,0	6,0,0	86,6	105,6	57,7	72,4	87,2	585
180	183	6,8	53,4	4,0	[,] 29,5	61,5	89,0	106,9	60,2	74,1	88,0	624
190	193	9,4	54,8	-7,0	31,8	62,9	- 91,2	108,1	62,5	75,6	88,8	661
				••′		•••		• .				
200	203	11,9	56,2	9,9	340	64.3	93,2	109,2	64,6	77,0	89,4	697
210	214	14,2	57,4	• 12,6	• 36,1	65,6	95,0	•110,3	66,4	78,3	90,0	732
220	223	16,4	58,6.	. 15,1	. 38 1	66,8	96,7	111,2	68,2	79,5	90,6	765
230	233	18,5	597	170	•39,9	67,9	, 98,3 '	112,2	69,7	80,6	91,1	796
240	243	20,5	60,7	• 19,9 •	41,7	69,0	99,8 [′]	113,0	71,2	81,6	91,6	826
			,	••••	•		• • *					
250	252	: 22.4	61,7	22,1	43,3	70,0	101,2	113,8	72,5	. 82.6	92,0	
260	262	24.3	62,6	24,2	44,9	71,0	102,5	114,6	73,7	· 83,5 · ′	92,4	
270	271	26,0	69,5	26,2	46,4 /	•72,0	103,7	•115,3	74,9	84,3	92,7	
280	280	27,7	64,3	28,1	47,9	72,9	104,9	116,0	75,9	\$5,1	93,0	
290	289	29,2	65,1	20,0	. 49.2	, 73,7	106,0	116,6	• 76,9		93,3	
				****	• • • • • • • • • • • • • • • • • • •							
300	298	30,8	65,8	31,6	50,6	74,6	107,0	117,2	77,9	86,5	93,6	
310	307	32,2	66,6	33,6	\$51,8	75,4	108,0	117,8	78,8	87,1	93,9	
320	316	33,6	67,2	35,0	53,0	76,1	108,9	118,4	79,6	87,8	94,1	

NOTE 1 The values of the tension tests are <u>not</u> based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009.

NOTE 2 If only HV is given without a number, then most probably HV30 is meant.

HV	нвw	HRC	HRA	HR45N	HR30N	HR15N
			•			
580	572	54,0	78,1	59,5	71,4	87,2
590	576	54,4	78,4	59,6	71,9	87,4
		• • • • • • • • • • • • • • • • • • •				
600	580	54,8	`78,6	• 59,9	72,3	87,6
610	585	55,2		60,2	72,8	87,8
620	591	55,6	79,1	60,5	73,2	88,0
630	597	56,1	79,8	60,9	73,6	88,2
640	604 ,	50,50000	· 79,6	61,4	74,1	88,4
	• • • • • • • • • • • • • • • • • • •			• •		
650	611	56,9	79,8	61,8	74,5	88,7
660	619	57,4	80,1	••62,4		88,9
670	627	57,8	\$ 80,3	63,0	75,4	89,1
680	636	58,3	80,6	63,6	75,8	89,4
690	646	58,7	80,9	`64,2.	76,2	89,6
			• • • • • • • • • •		•••	
700	656	59,2	81,1	64,9	76,7	89,8
710	666	59,7	81,4	65,6	77,1	90,1
720	677	60,1	81,7	66,4	77,5	90,3

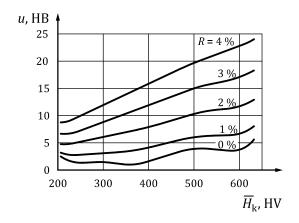
Table B.4 — Conversion of hardness-to-hardness values for quenching and tempering steels in the quenched condition

调质钢 (淬火状态)的硬度-硬度换算值

Table B.5 — Uncertainty curves to be used for conversion as in <u>Table B.2</u>

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
HB	HV/HB	Figure B.1
HV	HB/HV	Figure B.2
HRC	HV/HRC	Figure B.3
HV	HRC/HV	Figure B.4
HRA	HV/HRA	Figure B.5
HV	HRA/HV	Figure B.6
HR45N	HV/HR45N	Figure B.7
HV	HR45N/HV	Figure B.10
HR30N	HV/HR30N	Figure B.8
HV	HR30N/HV	Figure B.11
HR15N	HV/HR15N	Figure B.9
HV	HR15N/HV	Figure B.12
HRB	HV/HRB	Figure B.13
HV	HRB/HV	Figure B.14
HRF	HV/HRF	Figure B.15
HV	HRF/HV	Figure B.16
HR45T	HV/HR45T	Figure B.17
NOTE If only HV is given without a num	per, then most probably HV30 is meant.	

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
HV	HR45T/HV	Figure B.18
HR30T	HV/HR30T	Figure B.19
HV	HR30T/HV	Figure B.20
HR15T	HV/HR15T	Figure B.21
HV	HR15T/HV	Figure B.22
HRC	HRA/HRC	Figure B.23
HRC	HR30N/HRC	Figure B.24
HRB	HRF/HRB	Figure B.25
HRB	HR30T/HRB	Figure B.26
МРа	HV/R _m	Figure B.63
МРа	HB/R _m	Figure B.64
МРа	HRC/R _m	Figure B.65
NOTE If only HV is given without a num	ber, then most probably HV30 is meant.	


Table B.5 (continued)

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
НВ	HV/HB	Figure B.27
HV	HB/HV	Figure B.28
HRC	HV/HRC	Figure B.29
HV	HRC/HV	Figure B.30
HRA	HV/HRA	Figure B.31
HV	HRA/HV	Figure B.32
HR45N	HV/HR45N	Figure B.33
HV	HR45N/HV	Figure B.34
HR30N	HV/HR30N	Figure B.35
HV	HR30N/HV	Figure B.36
HR15N	HV/HR15N	Figure B.37
HV	HR15N/HV	Figure B.38
HRB	HV/HRB	Figure B.39
HV	HRB/HV	Figure B.40
HRF	HV/HRF	Figure B.41
HV	HRF/HV	Figure B.42
HR45T	HV/HR45T	Figure B.43
HV	HR45T/HV	Figure B.44
HR30T	HV/HR30T	Figure B.45
HV	HR30T/HV	Figure B.46
HR15T	HV/HR15T	Figure B.47
HV	HR15T/HV	Figure B.48
HRC	HR30N/HRC	Figure B.49
HRB	HR30T/HRB	Figure B.50
МРа	HV/R _m	Figure B.66
МРа	HB/R _m	Figure B.67
МРа	HRC/R _m	Figure B.68
NOTE If only HV is given without a number	per, then most probably HV30 is meant.	

Table B.6 — Uncertainty curves to be used for conversion as in <u>Table B.3</u>

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
НВ	HV/HB	Figure B.51
HV	HB/HV	Figure B.52
HRC	HV/HRC	Figure B.53
HV	HRC/HV	Figure B.54
HRA	HV/HRA	Figure B.55
HV	HRA/HV	Figure B.56
HR45N	HV/HR45N	Figure B.57
HV	HR45N/HV	Figure B.58
HR30N	HV/HR30N	Figure B.59
HV	HR30N/HV	Figure B.60
HR15N	HV/HR15N	Figure B.61
HV	HR15N/HV	Figure B.62
NOTE If only HV is given without a num	per, then most probably HV30 is meant.	

Table B.7 — Uncertainty curves to be used for conversion as in <u>Table B.4</u>

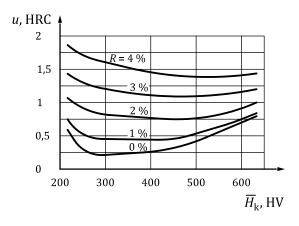
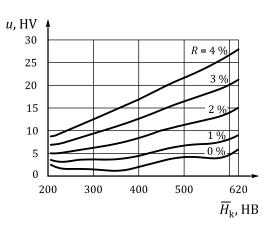



Figure B.3

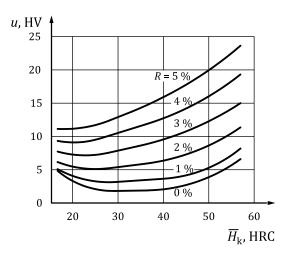
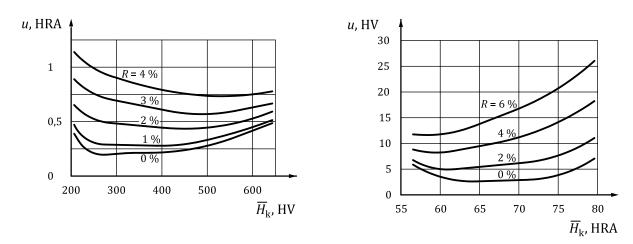
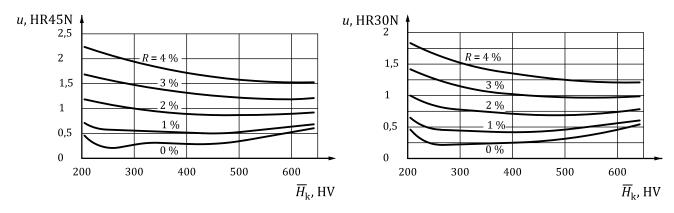




Figure B.4

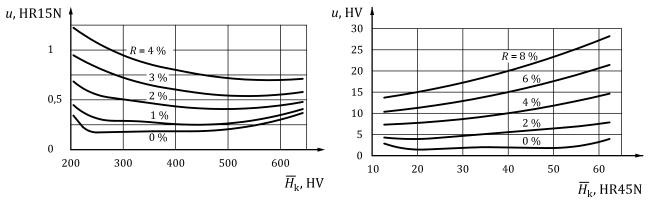
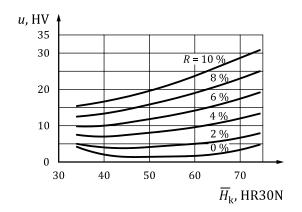



Figure B.9

Figure B.10

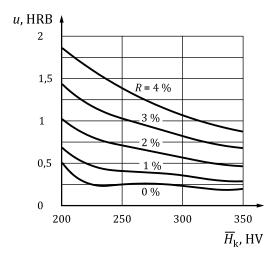


Figure B.13

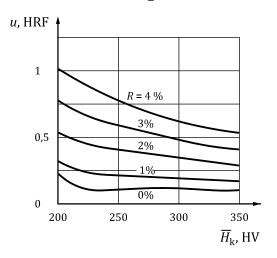
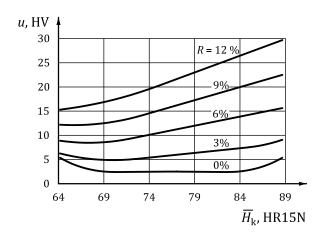



Figure B.15

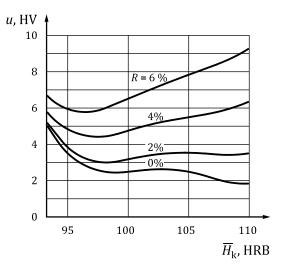
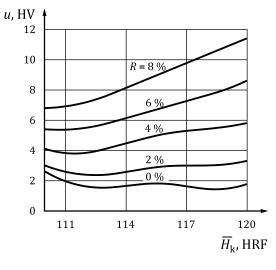
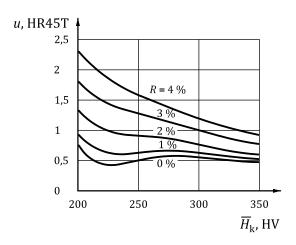
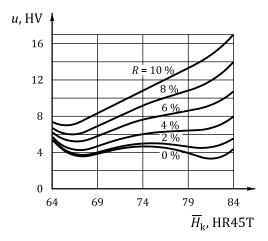
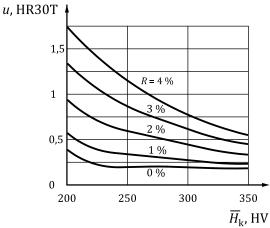
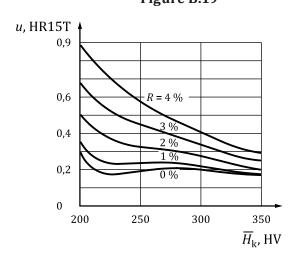
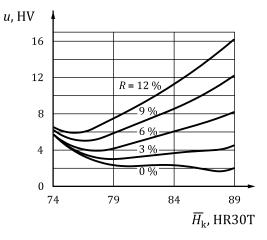
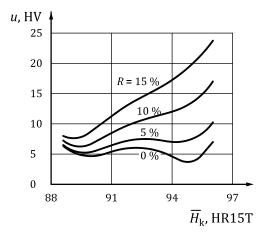
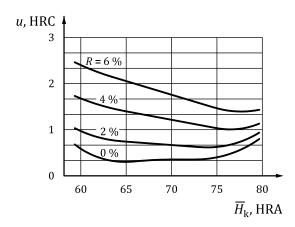


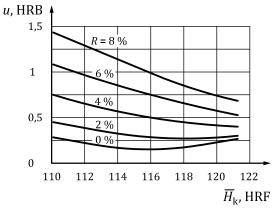
Figure B.14


Figure B.16




Figure B.20

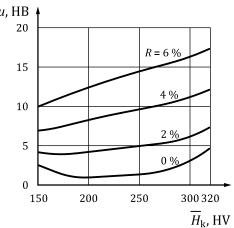
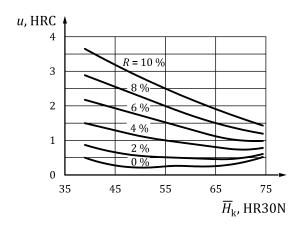



Figure B.27

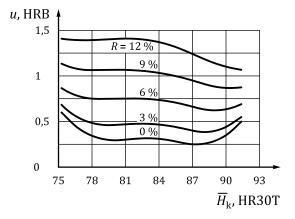


Figure B.26

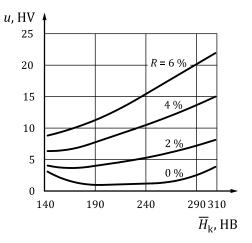
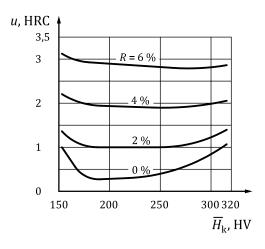
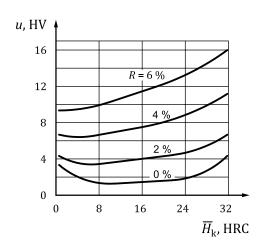
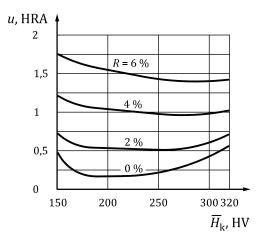
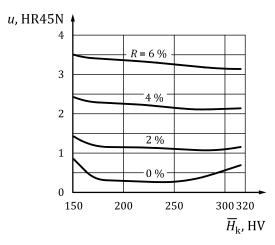
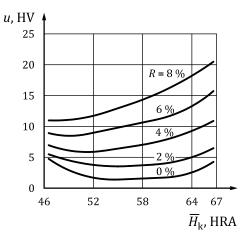
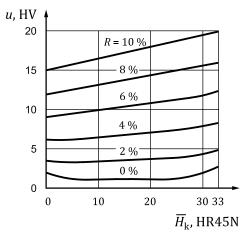
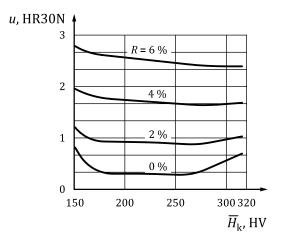
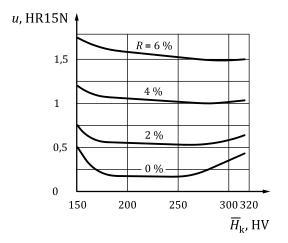




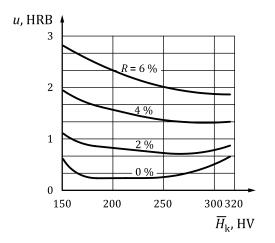
Figure B.28

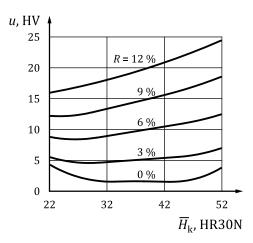

110 112 114 116 118 124 Figure B.25






Figure B.34



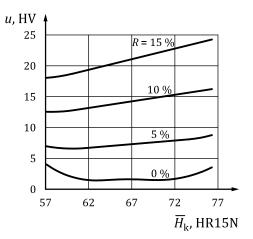
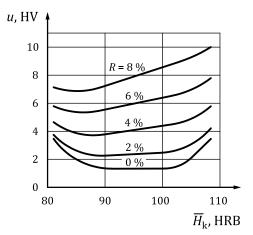
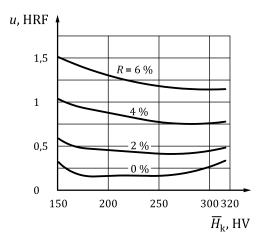
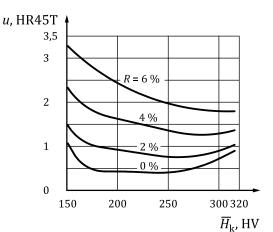
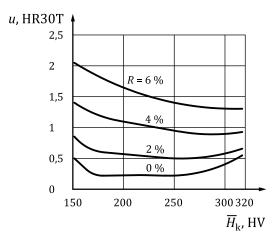
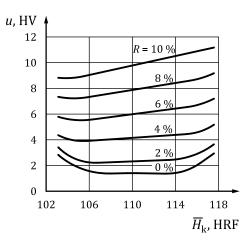
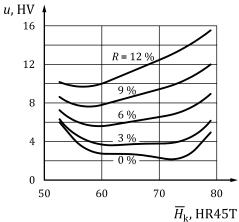


Figure B.38


Figure B.40





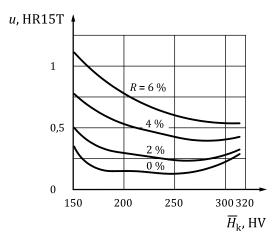
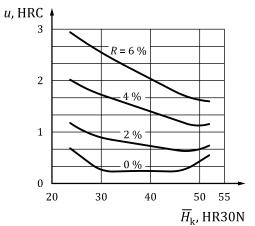
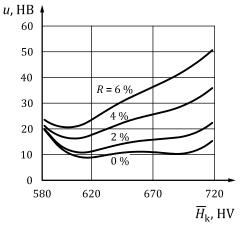
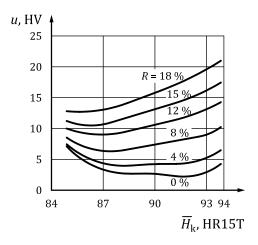


Figure B.44







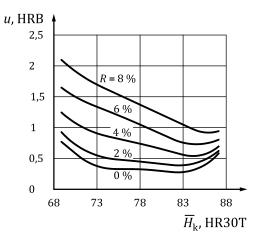


Figure B.50

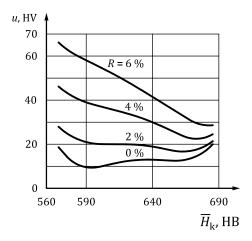
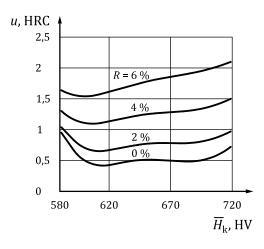
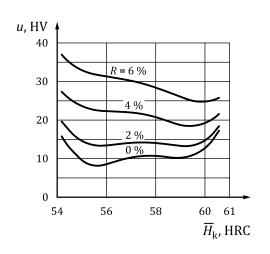
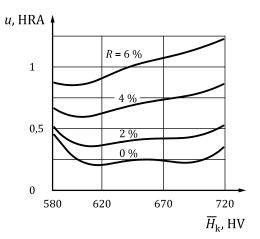




Figure B.52


Figure B.49

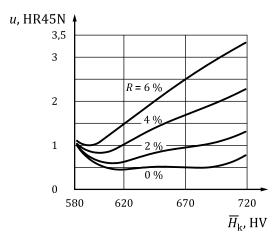
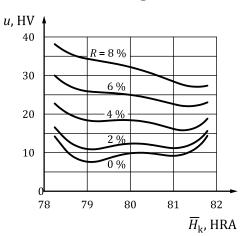
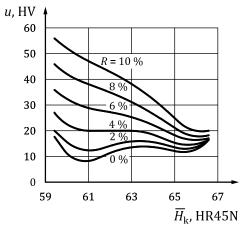
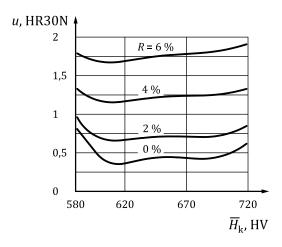
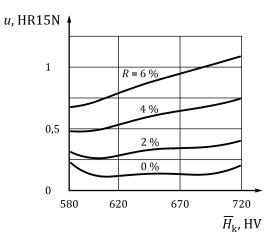
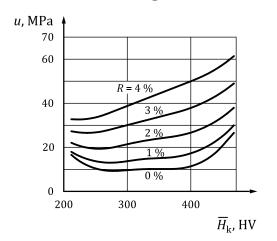


Figure B.57


Figure B.56



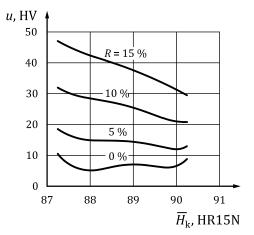


Figure B.62

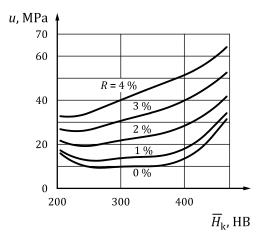
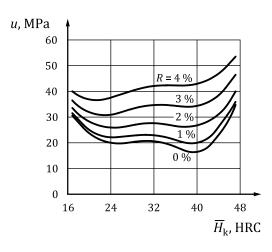
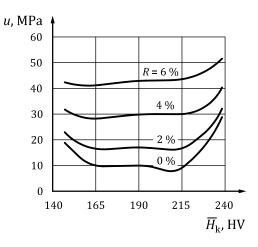




Figure B.64

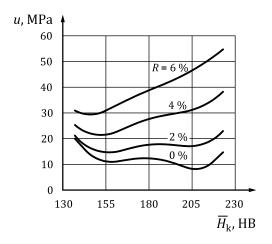


Figure B.67

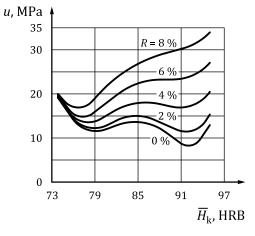


Figure B.68

Annex C (informative)

Conversion tables for steels for cold working

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

This Annex presents conversion values for steels for cold working that have been quenched and tempered. These values are based on results of testing carried out on steels as specified in TGL 4393. The steel grades that were tested are listed in Table C.1, which also provides an overview of the former designations used in the TGL standard along with the corresponding designations as in ISO 4957. Table C.2 lists the conversion values, while Table C.3 gives an overview of the uncertainty curves presented in Figures C.1 to C.28 which are to be used in conjunction with the conversion tables.

NOTE A useful reference book is [24]. It provides information for the comparison of different national and international steel designations with regard to their compositions.

Steel grade	Steel grade (as in ISO 4957)				
(as in TGL 4393)	Material no.	Name			
85CrMo7.2	1.2304	85CrMo7			
UR85CrMo7.2	1.2304	85CrMo7			
90MnV8	1.2842	90MnCrV8			
101Cr6	1.3514	101Cr6LW			
UR101Cr6	1.3505 a	100Cr6			
125CrSi5	1.2109	125CrSi5			
X125WMo6.5	1.3344 ^a	S6-5-3			
210Cr46	1.2080	X210Cr12			
210CrW46	1.2436	X210CrW12			
^a Chemical composition roughly equivalen	t to that specified in TGL 4393.				

Table C.1 — Cold working steels tested

						1910년 7년						
HV	HV 5	HB a	HRC	HRA	HR45N	HR30N	HR15N	HRB	HRF	HR45T	HR30T	HR15T
210	212	205	_	-	-	-	-	95,6	(110,7)	66,9	78,0	90,2
220	222	215	(18,8)	59,4	(16,4)	(38,8)	(67,0)	97,2	(111,6)	68,6	79,1	90,7
230	232	225	20,6	60,3	(18,7)	(40,5)	(68,2)	98,6 ^b	(112,5)	70,2	80,1	91,2
240	242	235	22,2	61,2 ^b	20,9	42,2	(69,3)	100,0 b	(113,3)	71,6	81,0	91,7
250	252	245	23,9	62,1 ^b	23,0	43,8 ^b	70,3	(101,4)	(114,0)	(72,9)	81,9	92,1
260	262	255	25,4	62,8	24,9	45,3	71,3	(102,6)	(114,7)	(74,1)	(82,7)	92,5
270	272	265	26,9	63,6	26,8	46,8	72,2	(103,7)	(115,3)	(75,2)	(83,5)	92,9
280	282	275	28,3	64,4	, 28,6	48,2	73,1	(104,7)	(115,9)	(76,3)	(84,2)	(93,3)
290	293	285	29,7 ^b	65,1	30,2	49,5	73,9	(105,6)	(116,4)	(77,3)	(84,8)	(93,6)
300	303	295	31,0	65,8,	31,9	• 50,7	74,7	(106,5)	(116,9)	(78,2)	(85,5)	(93,9)
				/ • •		•••						
310	313	304	32,3	664	33,4		75,4	(107,3)	(117,4)	(79,1)	(86,0)	(94,2)
320	323	314	33,5	67,1	34,9	53,0	76,1	(108,1)	(117,8)	(79,9)	(86,6)	(94,5)
330	333	324	34,6	67,7	36,3	54,1	76.8	(108,8)	(118,2)	(80,6)	(87,1)	(94,8)
340	343	334	35,8	68,3	37,8	55,2	774	(109,5)	(118,6)	(81,4)	(87,6)	(95,0)
350	353	344	36,8	68,8	89,0	• 56,2 •	78,0	•••	_	-	_	-
			•••• •••••			••••	,					
360	363	354 ,	379	694	40,2	57,2	⁄ 78 6					
370	373	363	38,9	699	41,4	58,1	79,2					
380	383	373		70,4	42,6	59,6	• 79,7					
390	393	, 383	40,8	•71,0	43,7	59,9	80,2	•				
400	404	292	41.7	71,4	44,8	, 60,7	80,7	•••		• • • • • • •		
			****			••				••••		
410	414	402	42,6	71,9	45 8 • •	61,5	81,2	•••		• • • •		
420	424	412	43,5	72,4	46,9		81,6			· • • • •		
430	434	422	44,3	72,8	• 47,8 •	63,1	82,1			• • • • • • •		
440	444	431	45,1	73,3	49,8	63,8	82,5					
450	454	441	45,9	73,7	Å9,7	64,5	82,9					
					<u> </u>							
460	464	450	46,7	74,1	50,5	65,2	83,3					
470	474	460	47,4	74,5	51,4	65,8	83,7					
480	484	469	48,2	74,9	52,2	66,5	84,0					
490	494	479	48,9	75,3	53,1	67,1	84,4					
500	505	488	49,5	75,6	53,9	67,7	84,7					
510	515	498	50,2	76,0	54,6	68,3	85,1					
520	525	507	50,9	76,4	55,4	68,9	85,4					
				,,	,	,,	,					

Table C.2 — Conversion of hardness-to-hardness values for cold working steels

冷加工钢的硬度-硬度换算值

^aBrinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

^bRecalculated in 2012 by interpolation.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 If only HV is given without a number, then most probably HV30 is meant.

ISO 18265:2013(E)

HV	HV 5	HB a	HRC	HRA	HR45N	HR30N	HR15N	HRB	HRF	HR45T	HR30T	HR15T
530	535	517	51,6	76,7	56,2	69,5	85,7					
540	545	526	52,1	77,0	56,8	70,0	86,0					
550	555	535	52,7	77,4	57,6	70,6	83,3					
560	565	545	53,3	77,7	58,2	71,1	86,6					
570	575	554	53,9	78,0	58,9	71,6	86,9					
580	585	563	54,5	78,3	59,6	72,1	87,1					
590	595	572	55,0	78,6	60,2	72,6	87,4					
600	606	582	55,6	78,9	<i>∕</i> €0,8	73,0	87,7					
					· • • • · · ·							
610	616	591	56,1	79,2	51,4	73,5	87,9					
620	626	600	56,6	795	62,0	74,0	88,2					
630	636	-	57,1	79,8		• 74,4	88,4					
640	646	-	57,6	80,0	63,2	74,8	- •999,6					
650	656	-	58,1	80,3	63,7 .	• • 75,3	• • • • • • • • • • • • • • • • • • •					
				•		••••	* * * * * * *					
660	666		58,6	<pre>' 80.6</pre>	54,3	75,7	891					
670	676		80,8	54,8	76,1	893					
680	686	í.	•59,5	• 81,0 •	65,3		• • 899,5					
690	697		59,9	.81,3	65,8	76,9	• 8 9,7					
700	707		60,4	81.5	66,3	77,3	89,9					
			• .									
710	717		<i>6</i> 0,8	81,8	66,8	· 77,7	90,1			• • • • •		
720	727		• 61,2	82,0	67,3 •	• • 78,0	90,3 •	• • *				
730	737		61,6	82,2	67,8	• 78,4	90,5	` ` ••				
740	747		62,0	82.5	: 58,2	, 78,8	90,7		•	· • • • • • • · ·		
750	757		62,4	82.7	58,7'	79,1	90,8					
					• • • • • • • •							
760	767		62,8	82,9	` 69,1	79,4	91,0					
770	777		63,2	83,1	69,6	79,8	91,2					
780	788		63,6	83,3	70,0	80,1	91,4					
790	798		64,0	83,5	70,4	80,4	91,5					
800	808		64,4	83,7	70,8	80,8	91,7					
810	818		64,7	83,9	71,3	81,1	91,9					
820	828		65,1	84,1	71,7	81,4	92,0					
830	838		65,4	84,3	72,1	81,7	92,2					
840	848		65,8	84,5	72,4	82,0	92,3					
H		I	1	I	1	I	1	I	1	1	I	1

Table C.2 (continued)

^aBrinell hardness values up to 450 HB were determined using a steel ball indenter, those above this value were determined with a hardmetal ball.

^bRecalculated in 2012 by interpolation.

NOTE 1 Values in parentheses are those lying outside the defined range of the standard test method but which may used as estimates.

NOTE 2 If only HV is given without a number, then most probably HV30 is meant.

To obtain uncertainty <i>u</i> , in	of conversion from/to	use	
HV 10; HV 5	HV/HV 10, HV/HV 5	Figure C.1	
HV	HV 10/HV, HV 5/ HV	Figure C.2	
НВ	HV/HB	Figure C.3	
HV	HB/HV	Figure C.4	
HRC	HV/HRC	Figure C.5	
HV	HRC/HV	Figure C.6	
HRA	HV/HRA	Figure C.7	
HV	HRA/HV	Figure C.8	
HR45N	HV/HR45N	Figure C.9	
HV	HR45N/HV	Figure C.10	
HR30N	HV/HR30N	Figure C.11	
HV	HR30N/HV	Figure C.12	
HR15N	HV/HR15N	Figure C.13	
HV	HR15N/HV	Figure C.14	
HRB	HV/HRB	Figure C.15	
HV	HRB/HV	Figure C.16	
HRF	HV/HRF	Figure C.17	
HV	HRF/HV	Figure C.18	
HR45T	HV/HR45T	Figure C.19	
HV	HR45T/HV	Figure C.20	
HR30T	HV/HR30T	Figure C.21	
HV	HR30T/HV	Figure C.22	
HR15T	HV/HR15T	Figure C.23	
HV	HR15T/HV	Figure C.24	
HRB	HRF/HRB	Figure C.25	
HRB	HR30T/HRB	Figure C.26	
HRC	HR30N/HRC	Figure C.27	
HRC	HRA/HRC	Figure C.28	

Table C.3 — Uncertainty curves to be used for conversion as in <u>Table C.2</u>

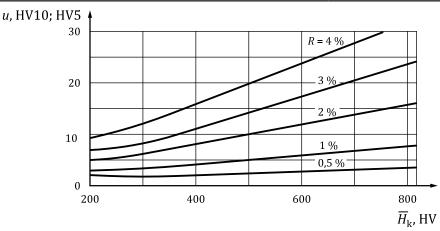
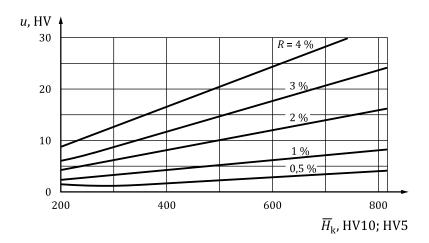
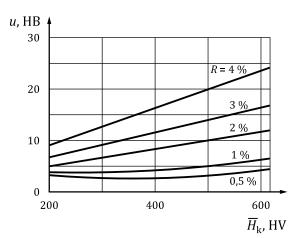




Figure C.1

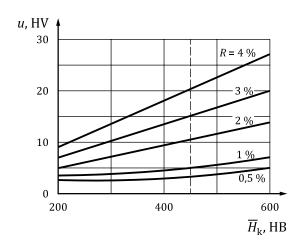
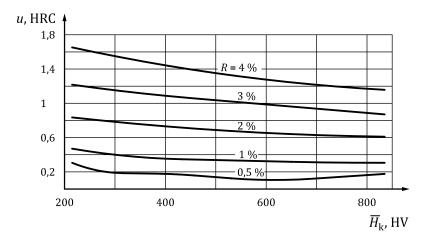
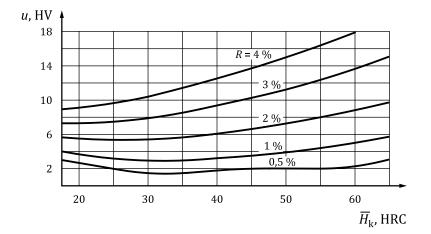




Figure C.4

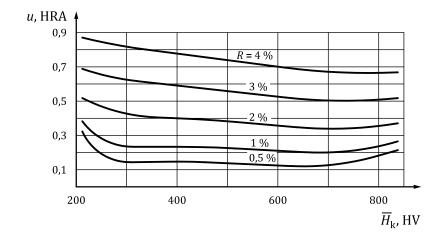
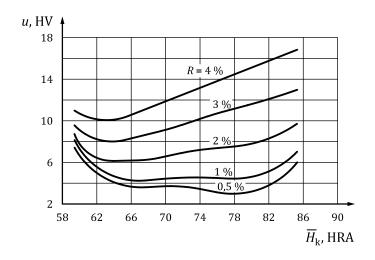
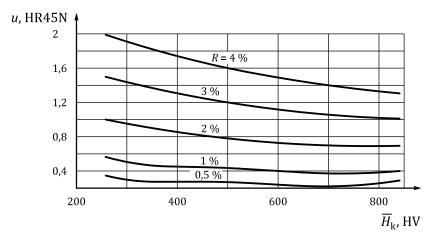




Figure C.7

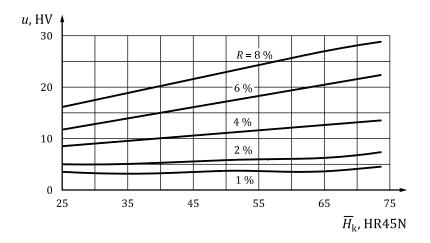
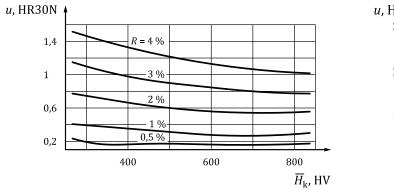
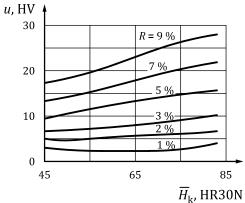




Figure C.10

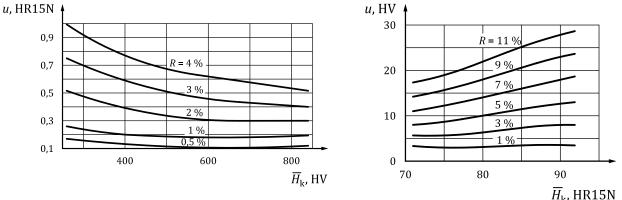


Figure C.13

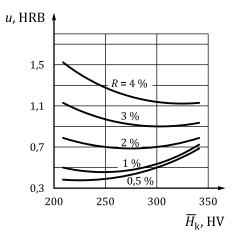


Figure C.14

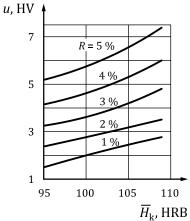


Figure C.16

 $\overline{H}_{
m k}$, HR15N

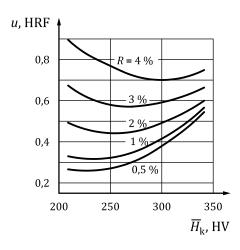


Figure C.19

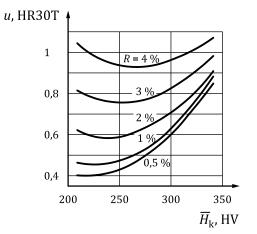


Figure C.21

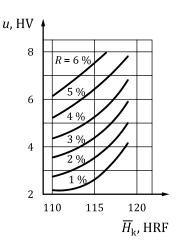


Figure C.18

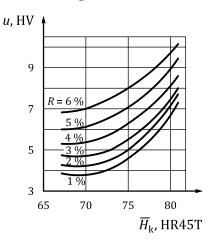


Figure C.20

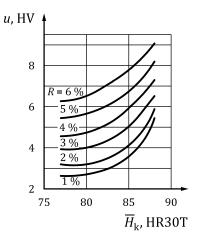
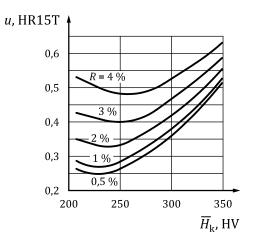
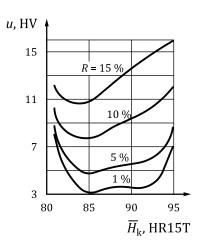




Figure C.22

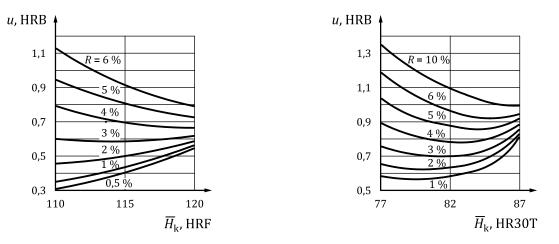


Figure C.25

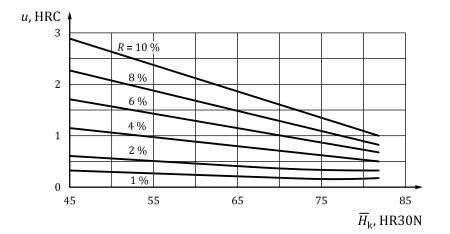


Figure C.27

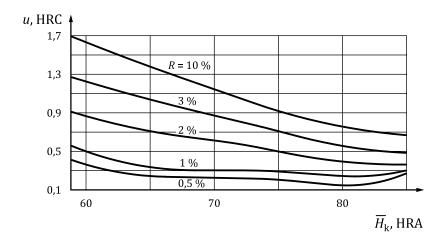


Figure C.28

Annex D

(informative)

Conversion tables for high speed steels

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

This Annex presents conversion values for high speed steels that have been quenched and tempered above the secondary hardening peak. These values are based on results of testing carried out on the high speed steel grades as in TGL 7571, listed in <u>Table D.1</u>, which also provides an overview of the former designations used in the TGL standard along with the corresponding designations as in ISO 4957. <u>Tables D.2</u>, <u>D.4</u>, <u>D.6</u> and <u>D.8</u> list the conversion values, while <u>Tables D.3</u>, <u>D.5</u>, <u>D.7</u> and <u>D.9</u> give an overview of the uncertainty curves presented in <u>Figures D.1 to D.30</u> which are to be used in conjunction with the conversion tables.

NOTE A useful reference book is [24]. It provides information for the comparison of different national and international steel designations with regard to their compositions.

Steel grade	Steel grade (as in ISO 4957)			
(as in TGL 7571)	Material no.	Name		
X80WMo6.5		X80WMo6.5		
X82WMo6.5		X82WMo6.5		
X90WMo6.5	1.3343	X90WMo6.5		
X97WMo3.3		X97WMo3.3		
X100WMo6.5	1.3342	X100WMo6.5		
X85WMoCo6.5.5	1.3243	X85WMoCo6.5.5		
X105WMoCo6.5.5	1.3355	X105WMoCo6.5.5		
X79WCo18.5	1.3255	X79WCo18.5		
X110MoCo9.8	1.3247	X110MoCo9.8		
NOTE Where no material number is list	ed, no equivalent number could be found	in ISO 4957.		

Table D.1 — High speed steels tested

Table D.2 — Conversion of hardness-to-hardness values for high speed steels of steel grades X80WMo6.5, X82WMo6.5, X90WMo6.5, X97WMo3.3, X100WMo6.5, X85WMoCo6.5.5, X105WMoCo6.5.5 and X79WCo18.5 高速钢(钢号详见英文标题)的硬度-硬度换算值

/ickers hardness		Rockwell hardness							
HV 30	HRC	HRA	HR45N	HR30N	HR15N				
580	54,2	77,9	58,8	71,7	87,1				
590	54,7	78,2	59,4	72,2	87,4				
600	55,2	78,5	60,0	72,6	87,6				
610	55,7	78,7	60,6	73,1	87,8				
620	56,2	79,0 ª	61,1	73,5	88,1				
630	56,6	79,3	61,7	74,0	88,3				
640	57,1	79,6	62,2	74,4	88,5				
650	57,6	79,8	62,8	74,8	88,7				
660	58,0	80,1	63,3	75,2	88,9				
670	58,5	80,3	63,8	75,6	89,1				
680	58,9	80,6	64,3	76,0	89,3				
690	59,3		64,8	76,4	89,5				
700	59,7	81,0	65,3	76,7	89,7				
710	60,2	81,3	65,8	77,1	89,9				
720	60,6	.81,5	••••66,3•	77,4	90,1				
730	61,0	81,7		77,8	90,2				
740		82,0	67,2	78,1	90,4				
750	,	82,2	67 ,6	78,5	90,6				
		• • • • • • • •							
760	<i>,</i> 62,1	82,4	68,1	78,8	90,7				
770	62,5	82,6	68,5 😱	79,1	90,9				
780	62,9	82,8	68,9	79,5	91,0				
790	63,3	83.0	69,4	79,8	91,2				
800	63,6		69,8	80,1	91,3				
				• • • • • • •					
810	64,0	83,5	70,2	80,4	91,5				
820	64,3	83,6	70,6	80,7	91,6				
830	64,7	`` 83,8	71,0	81,0	91,8				
840	65,0	84,0	71,4	81,3	91,9				
850	65,4	84,2	71,7	81,6	92,0				
860	65,7	84,4	72,1	81,8	92,2				
870	66,0	84,6	72,5	82,1	92,3				
880	66,3	84,8	72,8	82,4	92,4				
890	66,7	85,0	73,2	82,7	92,5				
900	67,0	85,0	73,6	82,9	92,6				
910	67,3	85,3	73,9	83,2	92,8				

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
HRC	HV/HRC	Figure D.1
HV	HRC/HV	Figure D.2
HRA	HV/HRA	Figure D.3
HV	HRA/HV	Figure D.4
HR45N	HV/HR45N	Figure D.5
HR30N	HV/HR30N	Figure D.6
HR15N	HV/HR15N	Figure D.7
HV	HR45N/HV	Figure D.8
HV	HR30N/HV	Figure D.9
HV	HR15N/HV	Figure D.10
HRC	HRA/HRC	Figure D.11
HRC	HR30N/HRC	Figure D.12
NOTE If only HV is given without a numb	per, then most probably HV30 is meant.	

Table D.3 — Uncertainty curves to be used for conversion as in <u>Table D.2</u>

Table D.4 — Conversion between various Vickers hardness scales for high speed steels of steel grades X80WMo6.5, X82WMo6.5, X90WMo6.5, X97WMo3.3, X100WMo6.5, X85WMoCo6.5.5 and X105WMoCo6.5.5

HV	HV 10	HV 5	HV	HV 10	HV 5
580	587	: 589	750	760	762
590	598				
600	608	609	760	770	772
			770	780	782
610	618	620	- 780	790	792
620	628	630	790	801	802
630	638	· · · · · · · · · · · · · · · · · · ·	•••••••••	811	813
640	648	•••••650••••	• 810	821	823
650	656	, , , , , , , , , , , , , , , , , , ,	. 820	831	833
			•830	841	843
660	669	· · · · 670 _ ·	840	851	853
670	679	681	850	862	863
680	••• 689` \	691		• • • •	
690	699	`` 701 /	860	872	874
700	709	711	870	882	884
			-880	892	894
710	719		890	902	904
720	730	` 73 1	900	912	914
730	740	`\$742	910	923	924
740	750	752	920	933	935
NOTE If only H	V is given without a	a number, then most p	robably HV30 is m	eant.	

高速钢 (钢号详见英文标题)的不同维氏硬度单位换算值

To obtain uncertainty <i>u</i> , in	of conversion from/to	use				
HV 10, HV 5	HV/HV 10, HV/HV5	Figure D.13				
HV	HV 10/HV, HV5/HV	Figure D.14				
NOTE If only HV is given without a number, then most probably HV30 is meant.						

Table D.5 — Uncertainty curves to be used for conversion as in Table D.4

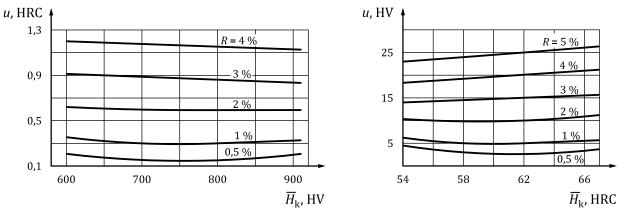
Table D.6 — Conversion between various Vickers hardness scales for high speed steels of steel grade X79WCo18.5

X79WCo18.5高速钢的不同维氏硬度单位换算值

HV		HV 5
790	,	794
800	806	805
810	817	816
820	828	826
830	839	837
840	850	847
850	861	858
860	872	868
870	883	879
880.	.894	890
890	905	9 00
900	916	
910	927	···· 921
920	938	932

NOTE If only HV is given without a number, then most probably HV30 is meant.

Table D.7 — Uncertainty curves to be used for conversion as in <u>Table D.6</u>


To obtain uncertainty <i>u</i> , in	of conversion from/to	use				
HV 10	HV/HV 10	Figure D.15				
HV	HV 10/HV	Figure D.16				
HV 5	HV/HV 5	Figure D.17				
HV	HV HV 5/HV Figure D.18					
NOTE If only HV is given without a number, then most probably HV30 is meant.						

Vi	ckers hardne	ss		Ro	ckwell hardı	ness	
HV	HV 10	HV 5	HRC	HRA	HR45N	HR30N	HR15N
740	-	_	-	82,0	67,8	77,9	90,7
750	-	-	-	82,2	68,1	78,3	90,8
760	_	_	,	82,5	68,4	78,6	90,9
770	768	759	63.2	82,7	68,8	79,0	91,0
780	779	770	68,5	82,9	69,1	79,3	91,1
790	790	781 /	63,9	83,1	69,4	79,6	91,2
800	801	791	64,2	83,3	69,7	79,9	91,3
810	812	802	. 64,5	83,5	••• 70,0	80,2	91,4
820	822	813	64,8	.83,7	70,3	80,5	91,6
830	833 í	\$23		83,8	70,6	80,8	91,7
840	844	834	65,4	84.0	71,0	81,0	91,8
850	855	, .845	65,7	, 84.2	71,3	81,3	91,9
	• • • • • • • •		• •				
860	866	856	66,0	84,4	•• 71,6	:81,5	92,0
870	876	866	66,3	84,5	71,9	81,8	92,1
880	887	•	66,Ó	84,7 (72,2	82,0	92,2
890	898	888	669	84,8	•72,5	82,8	92,4
900	909	899	67,1	85,0	72,8	•82,5	92,5
910	920	909	67,4	85,1	73,1	82,7	92,6
920	931	920	67,6	85,3	73,4	83,0	92,7
930	942	931	67,9	85,4	73,7	83,2	92,8
940	_	_	68,2	85,5	74,0	83,4	92,9
950	_	_	_	85,7	74,3	83,6	93,0
NOTE If only	y HV is given wi	thout a number	r, then most pro	bably HV30 is m	ieant.		

Table D.8 — Conversion of hardness-to-hardness values for high speed steels of steel grade X110MoCo9.8 X110MoCo9.8高速钢的硬度-硬度换算值

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
HV10	HV/HV10	Figure D.15
HV	HV10/HV	Figure D.16
HV5	HV/HV5	Figure D.17
HV	HV5/HV	Figure D.18
HRC	HV/HRC	Figure D.19
HV	HRC/HV	Figure D.20
HRA	HV/HRA	Figure D.21
HV	HRA/HV	Figure D.22
HR45N	HV/HR45N	Figure D.23
HV	HR45N/HV	Figure D.24
HR30N	HV/HR30N	Figure D.25
HV	HR30N/HV	Figure D.26
HR15N	HV/HR15N	Figure D.27
HV	HR15N/HV	Figure D.28
HRC	HRA/HRC	Figure D.29
HRC	HR30N/HRC	Figure D.30
NOTE If only HV is given without a num	ber, then most probably HV30 is meant.	

Table D.9 — Uncertainty curves to be used for conversion as in <u>Table D.8</u>

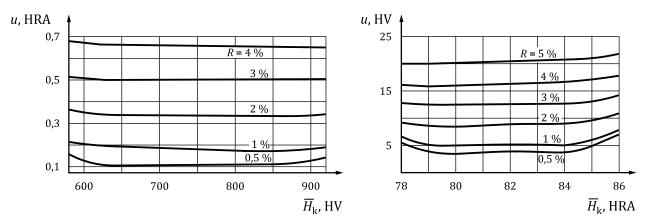


Figure D.3

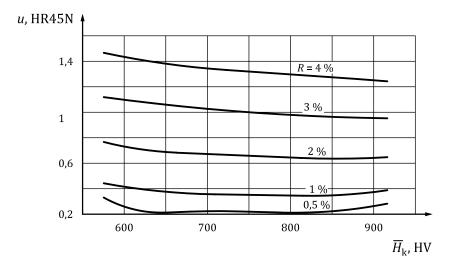
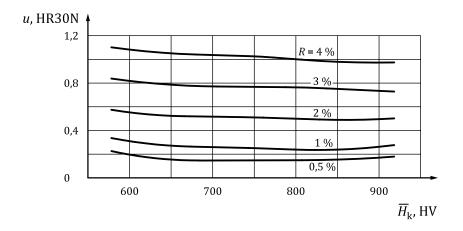



Figure D.5

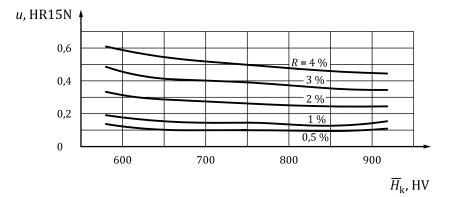


Figure D.7

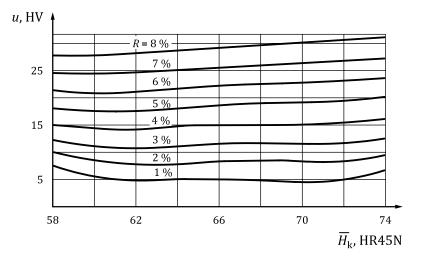
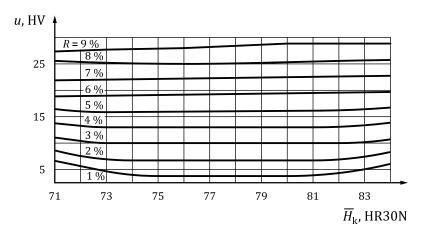



Figure D.8

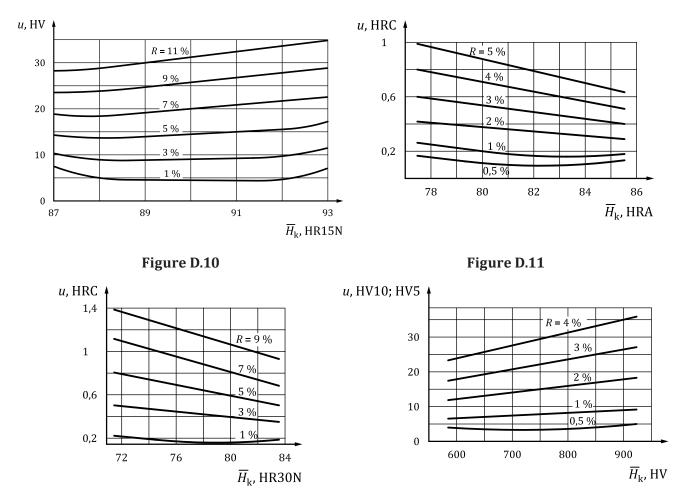
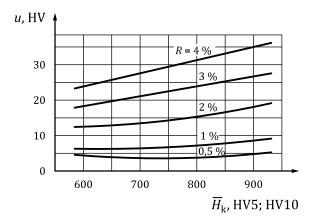



Figure D.13

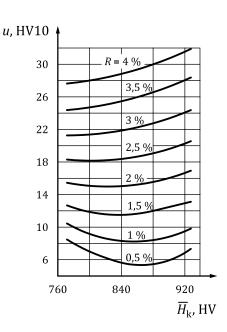


Figure D.14

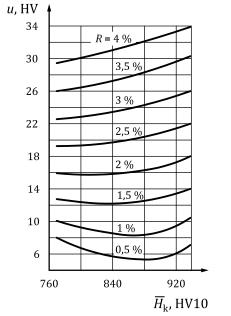


Figure D.16

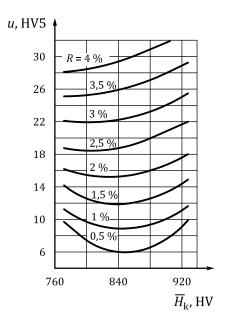
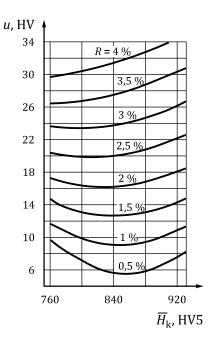
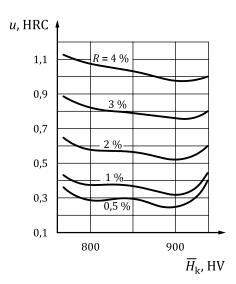
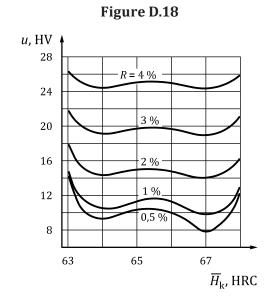





Figure D.17

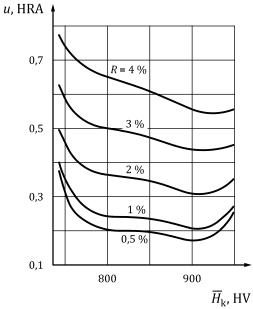
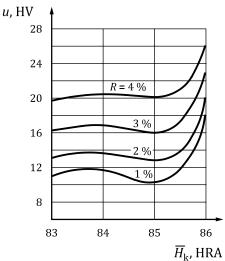
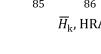




Figure D.21

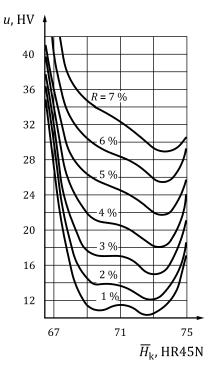


Figure D.24

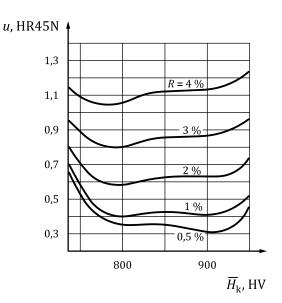


Figure D.23

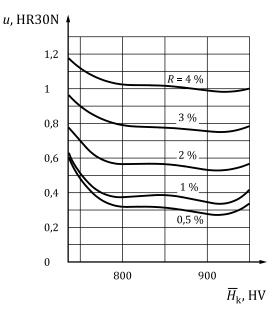
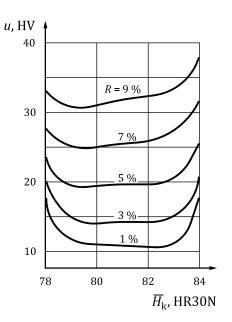
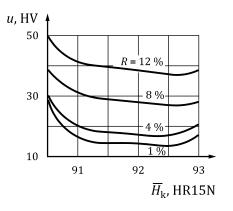




Figure D.25

u, HR15N 0,5 0,4 0,3 0,2 750 850 950 \overline{H}_k , HV

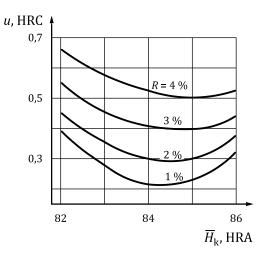


Figure D.30

Annex E (informative)

Conversion tables for hardmetals

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

The conversion values presented here for hardmetals are based on results of testing carried out on the hardmetals as in TGL 7965-02, listed in Table E.1. Table E.2 lists the conversion values, while Table E.3 gives an overview of the uncertainty curves presented in Figures E.1 and E.2 which are to be used in conjunction with the conversion tables.

NOTE A useful reference book is [24]. It provides information for the comparison of different national and international steel designations with regard to their compositions.

Hardmetal grade as in TGL 7965-02	WC content (% m/m)	TiC content (% m/m)	TaC and NbC (% m/m)	Co content (% m/m)
HS 021	65,8	23,0	8,0	3,2
HS 123	67,3	16,8	7,9	8,0
HS 10	69,0	17,0	8,0	6,0
HS 20	74,0	12,0	6,0	8,0
HS 25	76,0	5,0	10,0	9,0
HS 30	83,0	5,0	5,0	7,0
HS 345	76,9	7,2	7,2	8,7
HS 40	82,0	5,0	4,0	9,0
HS 50	80,0	5,0	3,0	12,0
HG 01	96,0			4,0
HG 110	94,0			6,0
HG 20	94,0			6,0
HG 30	91,5			8,5
HG 40	89,0			11,0
HG 50	85,0			15,0
HG 60	80,0			20,0
HU 10	79,0	10,0	5,0	6,0

Table E.1 — Designation and chemical composition of hardmetals tested

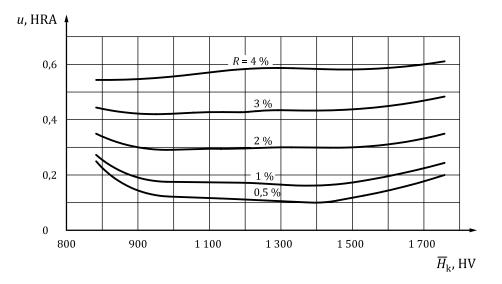

Vickers hardness HV 50	.	Rocl	kwell hardness HRA
780			82,5
800			82,8
820			83,1
840			83,4
860			83,7
880			84,0
900	, , , , , , , , , , , , , , , , , , ,		84,2
920) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		84,5
940	· · · · · · · · · · · · · · · · · · ·		84,8
960			85,1
980	•••••	- • • •	85,3
1 000	••• ••/ •• ••		85,6
1 020	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	85,8
1 040	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	86,1
1.060	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	86,4
.11080.' .:	• • • • • • • • •		86,6
, 1100	* * * * * * * * * * * * * * * *		86,8
• • • • • • • • • • • •			87,1
• <u>1</u> •1•4•0• • •	••••••••••••••••••••••••••••••••••••••		87,3
1 160	• • • • • •	/ J O O C	87,6
1 180			87,8
1 200			88,0
1 220			(88,2)
1 240			(88,4)
1 260			(88,7)
1 280			(88,9)
1 300			(89,1)
1 320			(89,3)
1 340			(89,5)
1 360			(89,7)
1 380			(89,9)
1 400			(90,1)

Table E.2 — Conversion from HV 50 values to HRA values of hardmetals 硬质合金的HV 50到HRA换算值

Vickers hardness HV 50	Rockwell hardness HRA
1 420	(90,3)
1 440	(90,5)
1 460	(90,7)
1 480	(90,9)
1 500	(91,0)
•••* ••• •••	
1 520	(91,2)
1 540	(91,4)
1.560	(91,6)
, 1 580	(91,8)
1.600	(91,9)
1 620	(92,1)
1 640	(92,3)
1 660	(92,4)
1 680	(92,5)
1 700	[92,8]
• • • • • • • • • • • • • • • • • • •	
1 720	(92,9)
1 740	(93,1)
1 760	(93,2)
NOTE Values in parentheses are those lying outside the detestimates.	fined range of the standard test method but which may used as

 Table E.2 (continued)

To obtain uncertainty <i>u</i> , in	of conversion from/to	use
HRA	HV 50/HRA	Figure E.1
HV 50	HRA/HV 50	Figure E.2

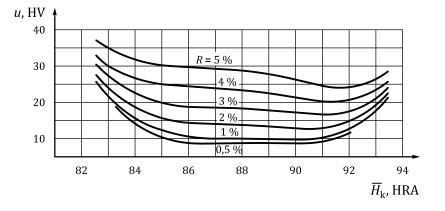


Figure E.2

Annex F

(informative)

Conversion tables for non-ferrous metals and alloys

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>. The user of <u>Annex F</u> should consider that the given metals and alloys in most cases are not specified with respect to their composition and treatment conditions.

The following tables are provided.

- Table F.1Nickel and High-Nickel Alloys
- Table F.2Cartridge brass (70% Copper, 30% Zinc Alloy)
- Table F.3Copper
- Table F.4Wrought Aluminium Products
- Table F.5Aluminium and its Alloys

Hig
and
Nickel
e F.1
Table

Reformel Hardness Number 755 m. 800 HK HK <th>INSIDE INTENDENTIAL INTERMENTIAL IN</th> <th></th>	INSIDE INTENDENTIAL INTERMENTIAL IN																
HRBHRHRHRHRHR HISUHR3UHR3UHR3UHR3UHR3UHR3U $$	A HR3 HR3<		ĺ					Ro	ckwell Har	dness Num	ber						HK
	0 0.00 6.30 0.01 0.00 0.30 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.	HR/	1	HRB	HRC	HRD	HRE	HRF	HRG	HRK	HR15N	HR30N	HR45N	HR15T	HR30T	HR45T	НК0,5, НК1
	0 48.0 61.5 64.0 61.5 64.5 52.5 .	75,	ы	:	50,0	63,0	:	۰.	:	:	85,5	68,0	54,5		:		
	5 46.0 0.0 83.5 6.4.5 50.0 .	74,	5	:	48,0	61,5	:		:	:	84,5	66,5	52,5	:	:	:	:
	5 440 583 8.00 5.70 8.00 5.70 9.00 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01 5.70 9.01	73	5,5	:	46,0	60,0	÷			:	83,5	64,5	50,0	:	:	:	
	1 42.0 57.0 91.5 61.0 45.5 91.5 <th< td=""><td>1</td><td>2,5</td><td>:</td><td>44,0</td><td>58,5</td><td></td><td></td><td></td><td>:</td><td>82,5</td><td>63,0</td><td>47,5</td><td>:</td><td>:</td><td>:</td><td></td></th<>	1	2,5	:	44,0	58,5				:	82,5	63,0	47,5	:	:	:	
	0.5 4.0 5.5. 4.0 4.0 4.0	7	1,5	:	42,0	57,0		···	•		81,5	61,0	45,5			:	
	9.5 38.0 59.0 59.0 59.0 41.0 4.0 4.1 8.5 36.0 59.0 50.0		70,5		40,0	55,5					80,5	2'62	43,0			:	436
	86.5 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.0 37.5 37.0 37.5		59,5	:	38,0	54,0	••	• • • • • • • • • •		• • • •	5-64	, ^{58,0}	41,0	:	:	:	413
	67.5 34.0 11.5 <th< td=""><td></td><td>58,5</td><td>:</td><td>36,0</td><td>9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>38,5</td><td>:</td><td>:</td><td>:</td><td>392</td></th<>		58,5	:	36,0	9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							38,5	:	:	:	392
	66.5 (106) 32.0 **** (115.5) 94.0 **** 75.0 35.2 54.0 94.5 77.0 35.2 64.5 (104) 28.5 44.5 ***** (115.5) 91.0 ***** 75.0 35.5 30.0 94.0 84.5 75.0 35.5 64.5 (102) 25.5 44.5 ***** (113.0) ***** 75.1 25.5 93.0 83.0 73.0 30.4 64.5 25.5 44.5 **** (111.0) ***** 111.0 ***** 75.5 23.0 94.0 80.5 77.0 23.0 20.0 20.7 20.0 20.7 20.0 20.7 20.7 20.0 20.7 <td></td> <td>67,5</td> <td>:</td> <td>`•</td> <td>50.5</td> <td></td> <td></td> <td></td> <td></td> <td>77,5</td> <td>545</td> <td>36,0</td> <td>:</td> <td>:</td> <td>÷</td> <td>372</td>		67,5	:	` •	50.5					77,5	545	3 6,0	:	:	÷	372
(104) $28,5$ $46,5^{\circ}$ $61,5$ $91,0$ $91,0$ $61,5$ $91,0$ $81,5$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $75,0$ $73,0$ $73,0$ $73,0$ $73,0$ 100 $22,5$ $42,0$ $10,0$ $22,5$ $42,0$ $20,0$ $92,0$ $81,5$ $71,0$ $73,0$ 960 $10,0$ $22,0$ $40,0$ $10,0$ $112,0$ $22,5$ $22,0$ $22,0$ $22,0$ $81,5$ $71,0$ 940 $117,0$ $38,0$ $111,0$ $22,5$ $20,0$ $20,$	64,5 (104) 28,5 46,5 (115,5) 910 67,5 75,6 75,0 75,7 75,7 75,0 75,7 75,7 75,7 75,7 75,7 75,7 75,7 75,7 75,0 75,7 75,7 75,7 75,7 75,0 75,7 71,0 75,7 71,0 75,7 71,0 73,7 71,0 73,7 71,0 73,7 71,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 20,0		66,5	(106)	32,0	10,5 10,5 10,5 10,5 10,5 10,5 10,5 10,5	:, ;, • •	(116,5)	94,0		76,5		\$4,0	94,5	85,5	77,0	352
	630 (102) 25,5 44,5 ····· (14,4) 87,5 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,5,7 73,0 73,7 73,0 73,7 73,0 73,7 73,7 73,0 73,7 73,0 73,7 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0 73,0		64,5	(104)	28,5	46,5		(115,5)	91,0		75,0	5°5°	30,0	94,0	84,5	75,0	325
10022,542,0 (1130) $94,5$ $94,5$ $72,0$ $74,5$ $23,0$ $92,5$ $81,5$ $71,0$ 9820,040,0 (1120) $54,5$ $54,5$ $54,5$ $23,5$ $91,0$ $92,0$ $80,5$ $69,0$ $71,0$ 94 $(14,5)$ $38,0$ $$ (110) $75,5$ $94,5$ $66,5$ $37,5$ $11,0$ $99,5$ $77,5$ $65,0$ 94 $(14,5)$ $36,0$ $24,0$ $75,5$ $94,5$ $66,5$ $37,5$ $11,0$ $89,5$ $77,5$ $65,0$ 90 $(9,0)$ $32,0$ $(10,0)$ $(10,0)$ $75,5$ $94,5$ $65,0$ $32,5$ $11,0$ $89,5$ $75,0$ $63,0$ 90 $(9,0)$ $32,0$ $(10,0)$ $(10,0)$ $(10,0)$ $(10,0)$ $65,5$ $93,0$ $64,0$ $30,5$ $50,0$ $89,0$ $75,0$ $64,0$ 88 $(6,5)$ $32,0$ $(10,0)$ $(10,6)$ $(10,6)$ $62,5$ $93,0$ $64,0$ $30,5$ $75,0$ $83,0$ $75,0$ 86 $(4,0)$ $28,0$ $(10,6)$ $(10,6)$ $62,5$ $93,0$ $64,0$ $30,5$ $75,0$ $89,0$ $75,0$ $75,0$ $75,0$ 88 $(2,0)$ $28,6$ $(10,6)$ $(10,6)$ $56,5$ $89,0$ $61,5$ $89,0$ $75,0$ $75,0$ $75,0$ $75,0$ 84 $(2,0)$ $28,6$ $(10,6)$ $56,5$ $89,0$ $61,5$ $20,5$ $89,0$ $75,6$ $75,6$	61,5 100 22,5 42,0 (113,0) 64,5 72,0 44,5 23,0 92,5 81,5 71,0 283 60,5 98 20,0 40,0 (112,0) 55,5 50,0 39,5 17,0 91,0 79,0 67,0 261 57,5 94 (14,5) 36,0 55,5 50,0 37,5 14,0 90,5 77,5 65,0 239 55,5 92 (12,0) 38,0 55,5 93,0 55,5 10,0 75,5 59,0 37,5 14,0 90,5 77,5 65,0 239 55,5 92 (10,0) 106,5) 65,5 93,0 64,0 37,5 14,0 90,5 77,6 64,0 25,5 204 55,5 88 (6,5) 30,0 (10,6) 105,0 65,5 91,0 65,5 20,5 20,4 25,5 105 55,5 88 (5,0) 25,5 <td></td> <td>63,0</td> <td>(102)</td> <td>25,5</td> <td>44,5</td> <td></td> <td>• (114,5)</td> <td>87,5</td> <td></td> <td>73,5,</td> <td>-470</td> <td>26,5</td> <td>93,0</td> <td>83,0</td> <td>73,0</td> <td>304</td>		63,0	(102)	25,5	44,5		• (114,5)	87,5		73,5,	-470	26,5	93,0	83,0	73,0	304
9820,040,0 $(112,0)$ $\mathbf{\mathbf{\mathbf{\mathbf{7}}}$ $\mathbf{\mathbf{}}$ $\mathbf{\mathbf{7}}$ $\mathbf{\mathbf{7}}$ $\mathbf{\mathbf{7}}$ $\mathbf{\mathbf{7}}$ $\mathbf{\mathbf{7}}$ $\mathbf{7}$ 7	60.5 98 20,0 40,0 (112,0) 233.5 42,0 20,0 92,0 80,5 69,0 267 57.5 94 (17,0) 38,0 (111,0) 755.5 959.5 17,0 91,0 79,0 67,0 231 57.5 94 (14,5) 36,0 55.5 94,5 66,5 35,5 11,0 89,5 77,5 65,0 234 55.0 90 (9,0) 32,0 50,6 65,5 35,5 11,0 89,5 75,6 65,0 234 55.0 90 (9,0) 32,0 (10,0) (10,5) 65,5 93,0 64,0 30,5 75,6 65,0 23,5 10,0 23,5 10,0 20,0 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4 23,5 20,4		61,5	100	22,5	42,0					•72,0	44,5	23,0	92,5	81,5	71,0	283
96 $(17,0)$ 38.0 $(111,0)$ $75,5$ 100 $75,5$ 100 $75,5$ 100 $75,5$ 100 $75,5$ 100 $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,5$ $65,0$ $77,6$ $65,0$ $77,6$ $67,0$ $67,0$ $77,0$	590 96 (170) 380 (1110) 75.5 0000 37.5 17.0 91.0 79.0 67.0 25.1 57.5 94 (14.5) 36.0 5.5 35.5 14.0 90.5 77.5 65.0 239 56.5 92 (12.0) 34.0 5.5 24.5 55.0 35.5 11.0 89.5 75.0 63.0 235 55.0 90 (9.0) 32.0 5.00.85 107.50 65.5 93.0 64.0 30.5 75.5 65.0 235 55.0 88 (6.5) 30.0 61.05.0 65.5 93.0 64.0 37.5 75.0 83.0 75.5 195 55.5 88 (6.5) 30.5 64.0 55.5 197 204 205 195 204 205 195 195 204 205 195 204 205 195 204 205 205 187 205		60,5	98	20,0	40,0	:	(112,0)	19 19 19 19 19 19 19 19 19 19 19 19 19 1	• :	70,5	42,0	20,0	92,0	80,5	69,0	267
94 $(14,5)$ $36,0$ $3.4,0$ $3.5,5$ $(14,0,0)$ $7,5,5$ $68,0$ $37,5$ $14,0$ $90,5$ $77,5$ $65,0$ 92 $(12,0)$ $34,0$ \ldots $(10,7,5)$ $(9,0)$ $72,0$ $(9,0)$ $75,0$ $63,0$ $63,0$ 92 $(12,0)$ $34,0$ \ldots $(107,5)$ $(9,0)$ $72,0$ $69,5$ $32,5$ $32,5$ $7,5$ $89,0$ $75,0$ $63,0$ 98 $(6,5)$ $30,0$ $(107,0)$ $(105,0)$ $62,5$ $91,0$ $62,5$ $28,5$ $7,5$ $89,0$ $75,0$ $61,0$ 98 $(4,0)$ $28,0$ $(106,0)$ $(105,0)$ $62,5$ $91,0$ $62,5$ $28,5$ $20,0$ $87,5$ $72,0$ $57,5$ 98 $(4,0)$ $28,0$ $(106,0)$ $(105,0)$ $62,5$ $91,0$ $62,5$ $28,5$ $28,7$ $72,0$ $87,5$ $57,5$ 98 $(-1,0)$ $28,0$ $(106,0)$ $59,5$ $89,0$ $61,5$ $28,5$ $20,0$ $87,5$ $72,0$ $57,5$ 98 \ldots $24,5$ $(104,0)$ $59,5$ $87,7$ \ldots \ldots $86,0$ $69,5$ $53,5$ $53,5$ 98 \ldots $22,5$ $(10,6,0)$ $(10,6,0)$ $59,5$ $87,7$ \ldots $87,6$ $68,0$ $57,6$ $53,5$ 98 \ldots $22,5$ $(10,6,0)$ $59,5$ $87,7$ $28,5$ $87,0$ $88,0$ $70,5$ $53,5$ 98 \ldots $22,5$ $(10,6,0)$ $69,5$ $53,0$ <td>57.5 94 (14,5) 36.0 •••• (14.0) 7.5.0 64.0 37.5 14,0 90.5 77.5 65.0 239 56.5 92 (12.0) 34.0 (14.0) 7.5.0 64.0 35.5 11,0 89.5 76.0 63.0 236 55.0 90 (9.0) 32.0 2106.5) (107.5) 69.0 94.5 65.0 32.5 75.0 89.0 75.0 61.0 215 55.5 88 (6.5) 30.0 (105.0) (105.0) 65.5 93.0 64.0 30.5 50.0 88.0 75.0 61.0 215 55.5 88 (6.5) 30.0 (105.0) (105.0) 65.5 89.0 61.5 75.0 89.0 75.0 87.5 197 55.5 88 (5.5) 105.0 (105.0) 55.5 89.0 76.5 55.5 187 55.0 87 2.0 87.5 20.</td> <td></td> <td>59,0</td> <td>96</td> <td>(17,0)</td> <td>38,0</td> <td></td> <td>(111,0)</td> <td>78.5</td> <td>1004</td> <td>69.0</td> <td>39,5</td> <td>17,0</td> <td>91,0</td> <td>79,0</td> <td>67,0</td> <td>251</td>	57.5 94 (14,5) 36.0 •••• (14.0) 7.5.0 64.0 37.5 14,0 90.5 77.5 65.0 239 56.5 92 (12.0) 34.0 (14.0) 7.5.0 64.0 35.5 11,0 89.5 76.0 63.0 236 55.0 90 (9.0) 32.0 2106.5) (107.5) 69.0 94.5 65.0 32.5 75.0 89.0 75.0 61.0 215 55.5 88 (6.5) 30.0 (105.0) (105.0) 65.5 93.0 64.0 30.5 50.0 88.0 75.0 61.0 215 55.5 88 (6.5) 30.0 (105.0) (105.0) 65.5 89.0 61.5 75.0 89.0 75.0 87.5 197 55.5 88 (5.5) 105.0 (105.0) 55.5 89.0 76.5 55.5 187 55.0 87 2.0 87.5 20.		59,0	96	(17,0)	38,0		(111,0)	78.5	1004	69.0	39,5	17,0	91,0	79,0	67,0	251
92(12,0) $34,0$ \ldots $400,5$ $72,0$ $96,5,\ldots$ $66,5$ $35,5$ $11,0$ $89,5$ $76,0$ $63,0$ 90(9,0) $32,0$ $32,0$ $(107,0)$ $(107,5)$ $69,0$ $94,5$ $65,0$ $32,5$ $75,0$ $89,0$ $75,0$ $61,0$ 88(6,5) $30,0$ $(107,0)$ $(105,0)$ $65,5$ $93,0$ $64,0$ $30,5$ $5,0$ $88,0$ $75,0$ $61,0$ 86 $(4,0)$ $28,0$ $(106,0)$ $(105,0)$ $62,5$ $91,0$ $62,5$ $28,5$ $28,5$ $72,0$ $87,5$ $57,5$ 84 $(2,0)$ $26,5$ $(104,0)$ $59,5$ $89,0$ $61,5$ $26,5$ $87,5$ $72,0$ $57,5$ $57,5$ 82 \ldots $24,5$ $(104,0)$ $59,5$ $87,5$ $87,5$ $28,5$ $87,6$ $66,7$ $53,5$ 80 \ldots $22,5$ $(104,0)$ $59,5$ $87,5$ $87,5$ $28,5$ $87,6$ $68,0$ $57,5$ 81 \ldots $22,5$ $(104,0)$ $59,5$ $87,5$ \ldots \ldots \ldots \ldots $69,5$ $53,5$ 80 \ldots $22,5$ $(104,0)$ $59,5$ $87,5$ $28,7$ \ldots \ldots \ldots $26,5$ $53,5$ $53,7$ 80 \ldots $22,5$ $(104,0)$ $50,5$ $87,5$ ω ω ω $05,5$ $53,5$ ω 80 \ldots $22,5$ $(104,0)$ $50,5$ $87,5$ ω ω ω ω <t< td=""><td>56.5 92 (12.0) 34,0 (60.75) 69,0 94,5 66,5 35,5 11,0 89,5 76,0 63,0 226 55.0 90 (9,0) 32,0 (107,5) 69,0 94,5 65,0 32,5 75,0 61,0 215 53.5 88 (6,5) 30,0 (107,5) 65,5 93,0 64,0 30,5 7,0 88,0 75,5 195 53.5 88 (6,5) 30,0 (106,0) (106,5) 65,5 91,0 62,5 28,5 70,0 88,0 73,5 59,5 29,5 204 51,5 88 (4,0) 28,6 (104,0) 59,5 89,0 61,5 73,5 72,0 57,5 195 50,0 82 28,5 104,0 56,5 87,5 179 179 49,0 22,5 100,5 50,0 83,5 170</td><td></td><td>57,5</td><td>94</td><td>(14,5)</td><td>36,0</td><td>• •</td><td>(140,0)</td><td>75,5 •</td><td>98,0</td><td>68,0</td><td>37,5</td><td>14,0</td><td>90,5</td><td>77,5</td><td>65,0</td><td>239</td></t<>	56.5 92 (12.0) 34,0 (60.75) 69,0 94,5 66,5 35,5 11,0 89,5 76,0 63,0 226 55.0 90 (9,0) 32,0 (107,5) 69,0 94,5 65,0 32,5 75,0 61,0 215 53.5 88 (6,5) 30,0 (107,5) 65,5 93,0 64,0 30,5 7,0 88,0 75,5 195 53.5 88 (6,5) 30,0 (106,0) (106,5) 65,5 91,0 62,5 28,5 70,0 88,0 73,5 59,5 29,5 204 51,5 88 (4,0) 28,6 (104,0) 59,5 89,0 61,5 73,5 72,0 57,5 195 50,0 82 28,5 104,0 56,5 87,5 179 179 49,0 22,5 100,5 50,0 83,5 170		57,5	94	(14,5)	36,0	• •	(1 40,0)	75,5 •	98,0	68,0	37,5	14,0	90,5	77,5	65,0	239
90 $(9,0)$ $32,0$ $(107,5)$ $69,0$ $94,5$ $65,0$ $32,5$ $7,5$ $89,0$ $75,0$ $61,0$ 88 $(6,5)$ $30,0$ $(107,0)$ $(106,5)$ $65,5$ $93,0$ $64,0$ $30,5$ $5,0$ $88,0$ $73,5$ $59,5$ 86 $(4,0)$ $28,0$ $(106,0)$ $(105,0)$ $62,5$ $91,0$ $64,0$ $30,5$ $28,5$ $72,0$ $73,5$ $59,5$ 84 $(2,0)$ $28,6$ $(104,0)$ $59,5$ $89,0$ $61,5$ $26,5$ $87,7$ $72,0$ $75,6$ $57,5$ 82 \ldots $24,5$ $(104,0)$ $59,5$ $89,0$ $61,5$ $26,5$ $87,7$ $72,0$ $70,5$ $55,5$ 80 \ldots $24,5$ $(104,0)$ $59,5$ $87,5$ \ldots \ldots \ldots $86,0$ $69,5$ $53,5$ 80 \ldots $22,5$ $(104,0)$ $59,5$ $87,5$ \ldots \ldots \ldots $86,0$ $69,5$ $53,5$ 80 \ldots $22,5$ $(106,0)^3$ $(100,0)^3$ $(100,0)^3$ $(100,0)^3$ $87,5$ \ldots \ldots \ldots \ldots $86,0$ $69,5$ $53,5$ 80 \ldots $(19,0)$ $99,5$ $99,5$ $53,0$ $87,5$ \ldots \ldots \ldots \ldots $68,0$ $69,5$ $69,5$ 80 \ldots $(10,0)$ $99,5$ $99,5$ $87,5$ \ldots \ldots \ldots \ldots \ldots $24,5$ $68,0$ $69,5$ $68,0$ $75,5$ 70 $100,0$ $99,5$ <td>55,0 90 (9,0) 32,0 (107,5) 69,0 94,5 65,0 32,5 7,5 89,0 75,0 61,0 215 53,5 88 (6,5) 30,0 (107,0) (105,0) 65,5 93,0 64,0 30,5 5,0 88,0 75,5 59,5 204 52,5 86 (4,0) 28,0 (106,0) (105,0) 62,5 91,0 62,5 28,5 5,0 87,0 75,0 57,5 195 51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 72,0 57,5 195 195 50,0 82 (10,0,0) (104,0) 59,5 89,0 61,5 20,5 69,0 69,5 179 50,0 82 (10 21,5 (104,0) 59,5 87,0 60,0 69,5 53,5 1179 60,0 80 22,5 (104,5) 53,0 87,5 160 75,5 179 49,0 80 22,5 10,5</td> <td></td> <td>56,5</td> <td>92</td> <td>(12,0)</td> <td>34,0</td> <td>•••</td> <td>(108,5)</td> <td>72,0</td> <td>96,5</td> <td>66,5</td> <td>35,5</td> <td>11,0</td> <td>89,5</td> <td>76,0</td> <td>63,0</td> <td>226</td>	55,0 90 (9,0) 32,0 (107,5) 69,0 94,5 65,0 32,5 7,5 89,0 75,0 61,0 215 53,5 88 (6,5) 30,0 (107,0) (105,0) 65,5 93,0 64,0 30,5 5,0 88,0 75,5 59,5 204 52,5 86 (4,0) 28,0 (106,0) (105,0) 62,5 91,0 62,5 28,5 5,0 87,0 75,0 57,5 195 51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 72,0 57,5 195 195 50,0 82 (10,0,0) (104,0) 59,5 89,0 61,5 20,5 69,0 69,5 179 50,0 82 (10 21,5 (104,0) 59,5 87,0 60,0 69,5 53,5 1179 60,0 80 22,5 (104,5) 53,0 87,5 160 75,5 179 49,0 80 22,5 10,5		56,5	92	(12,0)	34,0	•••	(108,5)	72,0	96,5	66,5	35,5	11,0	89,5	76,0	63,0	226
88(6,5)30,0 $(107,0)$ (106,5) $65,5$ $93,0$ $64,0$ $30,5$ $5,0$ $88,0$ $73,5$ $59,5$ $59,5$ 86(4,0) $28,0$ (106,0)(105,0) $62,5$ $91,0$ $62,5$ $28,5$ $28,5$ $72,0$ $57,5$ $57,5$ 84(2,0) $26,5$ (104,0) $59,5$ $89,0$ $61,5$ $26,5$ $87,0$ $87,0$ $70,5$ $55,5$ 82 $24,5$ $(104,0)$ $59,5$ $87,5$ $87,5$ $26,5$ $87,6$ $69,5$ $55,5$ 80 $24,5$ $(104,6)$ $50,5$ $87,5$ $87,5$ $26,5$ $87,6$ $69,5$ $55,5$ 80 $22,5$ $(104,6)$ $50,5$ $87,5$ $87,5$ $10,5$ $86,0$ $69,5$ $53,5$ 80 $21,0$ $(100,6)$ $(105,6)$ $50,0$ $85,5$ $$ $$ $86,0$ $69,5$ $53,5$ 78 $21,0$ $(100,6)$ $(100,6)$ $(100,5)$ $50,0$ $83,5$ $$ $$ $84,5$ $66,5$ $49,5$ 76 $(17,0)$ $99,5$ $99,5$ $47,0$ $82,0$ $$ $$ $84,0$ $65,5$ $47,5$ 74 $(17,5)$ $98,0$ $98,5$ $43,5$ $80,0$ $$ $$ $84,0$ $65,5$ $49,5$ 74 $(17,5)$ $98,0$ $98,5$ $43,5$ $80,0$ $$ $$ $84,0$ $65,5$ $47,5$	53,5 88 (6,5) 30,0 (107,0) (106,5) 65,5 93,0 64,0 30,5 5,0 88,0 73,5 59,5 204 52,5 86 (4,0) 28,0 (106,0) (105,0) 62,5 91,0 62,5 28,5 72,0 87,5 72,0 57,5 195 51,5 84 (2,0) 26,5 104,0) 59,5 89,0 61,5 26,5 72,0 87,5 72,0 57,5 187 50,0 82 24,5 (104,0) 59,5 87,5 26,5 26,5 76,5 72,0 57,5 179 49,0 80 24,5 (104,0) 56,5 87,5 86,0 66,5 53,5 179 47,5 78 210,5 50,0 83,5 84,5 66,5 49,5 166 47,5 76 10,0 90,5 47,0 <td< td=""><td></td><td>55,0</td><td>06</td><td>(0'6)</td><td>32,0</td><td>(108,5)</td><td>(107,5)</td><td>69,0</td><td>94,5</td><td>65,0</td><td>32,5</td><td>7,5</td><td>89,0</td><td>75,0</td><td>61,0</td><td>215</td></td<>		55,0	06	(0'6)	32,0	(108,5)	(107,5)	69,0	94,5	65,0	32,5	7,5	89,0	75,0	61,0	215
86 $(4,0)$ $28,0$ $(106,0)$ $(105,0)$ $62,5$ $91,0$ $62,5$ $28,5$ $2,0$ $87,5$ $72,0$ $57,5$ $57,5$ 84 $(2,0)$ $26,5$ $(104,0)$ $59,5$ $89,0$ $61,5$ $26,5$ $87,0$ $70,5$ $55,5$ $55,5$ 82 \ldots $24,5$ $(104,0)$ $56,5$ $87,5$ $87,5$ \ldots \ldots $86,0$ $69,5$ $55,5$ $55,5$ 80 \ldots $22,5$ $(106,0)$ $(10,0,0)$ $56,5$ $87,5$ \ldots \ldots \ldots $86,0$ $69,5$ $53,5$ 80 \ldots $22,5$ $(100,6)$ $(100,6)$ $(100,6)$ $51,5$ $53,0$ $85,5$ \ldots \ldots \ldots $86,5$ $68,0$ $51,5$ 78 \ldots $21,0$ $(100,6)$ $(100,6)$ $(100,6)$ $(17,6)$ $87,5$ \ldots \ldots \ldots $84,5$ $66,5$ $49,5$ 76 \ldots $(17,5)$ $99,5$ $99,5$ $47,0$ $82,0$ \ldots \ldots \ldots \ldots $84,0$ $65,5$ $47,5$ 76 \ldots $(17,5)$ $98,0$ $98,5$ $47,0$ $82,0$ \ldots \ldots \ldots \ldots \ast \ast \ast \ast \ast \bullet <td>52,5 86 (4,0) 28,0 (106,0) (105,0) 62,5 91,0 62,5 28,5 27,0 87,5 72,0 57,5 195 51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 87,0 70,5 55,5 187 50,0 82 24,5 (104,0) 56,5 87,5 86,0 69,5 53,5 187 50,0 82 24,5 (104,0) 56,5 87,5 86,0 69,5 53,5 179 49,0 80 22,5 (104,0) 55,5 87,5 84,5 68,0 51,5 173 45,5 76 83,5 84,5 66,5 47,5 166 45,5 74 81,0 65,5 47,5 66,5 47,5 166 45,5 74 </td> <td></td> <td>53,5</td> <td>88</td> <td>(6,5)</td> <td>30,0</td> <td>•(107,0)</td> <td>(106,5)</td> <td>65,5</td> <td>93,0</td> <td>64,0</td> <td>30,5</td> <td>5,0</td> <td>88,0</td> <td>73,5</td> <td>59,5</td> <td>204</td>	52,5 86 (4,0) 28,0 (106,0) (105,0) 62,5 91,0 62,5 28,5 27,0 87,5 72,0 57,5 195 51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 87,0 70,5 55,5 187 50,0 82 24,5 (104,0) 56,5 87,5 86,0 69,5 53,5 187 50,0 82 24,5 (104,0) 56,5 87,5 86,0 69,5 53,5 179 49,0 80 22,5 (104,0) 55,5 87,5 84,5 68,0 51,5 173 45,5 76 83,5 84,5 66,5 47,5 166 45,5 74 81,0 65,5 47,5 66,5 47,5 166 45,5 74		53,5	88	(6,5)	30,0	•(107,0)	(106,5)	65,5	93,0	64,0	30,5	5,0	88,0	73,5	59,5	204
84 (2,0) 26,5 (104,5) 59,5 89,0 61,5 26,5 87,0 70,5 55,5 55,5 82 $24,5$ $(00,1)$ $(104,0)$ $56,5$ $87,5$ $87,5$ $69,5$ $53,5$ $53,5$ 80 $24,5$ $(00,1,5)$ $56,5$ $87,5$ $$ $$ $86,0$ $69,5$ $53,5$ 80 $22,5$ $(00,1,5)$ $53,0$ $85,5$ $$ $$ $86,0$ $69,5$ $53,5$ 78 $21,0$ $(100,6)_{14}$ $(100,5)_{14}$ $(100,5)_{14}$ $(100,5)_{14}$ $(17,6)$ $87,5$ $68,0$ $69,5$ $49,5$ 76 $(119,0)$ $99,5$ $99,5$ $47,0$ $82,0$ $$ $84,5$ $66,5$ $49,5$ 76 $(119,0)$ $99,5$ $99,5$ $47,5$ $80,0$ $$ $$ $84,0$ $65,5$ $47,5$ <td>51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 (70,5) 87,0 70,5 55,5 187 50,0 82 24,5 (104,0) 56,5 87,5 87,5 179 179 49,0 80 24,5 (105,5) (104,5) 53,0 85,5 86,0 69,5 53,5 179 49,0 80 22,5 (105,5) (100,5) 53,0 83,5 84,5 68,0 64,5 49,5 166 46,5 (19,0) 99,5 47,0 82,0 84,0 65,5 47,5 166 45,5 74 (17,5) 98,0 98,0 84,0 65,5 47,5 166 45,5 74 84,0 64,0 45,5 166 45,5</td> <td></td> <td>52,5</td> <td>86</td> <td>(4,0)</td> <td>28,0</td> <td>(106, 0)</td> <td>(105,0)</td> <td>62,5</td> <td>91,0</td> <td>62,5</td> <td>28,5</td> <td>2,0</td> <td>87,5</td> <td>72,0</td> <td>57,5</td> <td>195</td>	51,5 84 (2,0) 26,5 (104,0) 59,5 89,0 61,5 26,5 (70,5) 87,0 70,5 55,5 187 50,0 82 24,5 (104,0) 56,5 87,5 87,5 179 179 49,0 80 24,5 (105,5) (104,5) 53,0 85,5 86,0 69,5 53,5 179 49,0 80 22,5 (105,5) (100,5) 53,0 83,5 84,5 68,0 64,5 49,5 166 46,5 (19,0) 99,5 47,0 82,0 84,0 65,5 47,5 166 45,5 74 (17,5) 98,0 98,0 84,0 65,5 47,5 166 45,5 74 84,0 64,0 45,5 166 45,5		52,5	86	(4,0)	28,0	(106, 0)	(105,0)	62,5	91,0	62,5	28,5	2,0	87,5	72,0	57,5	195
82 $24,5$ $(63,5)$ $56,5$ $87,5$ $$ $$ $86,0$ $69,5$ $53,5$ $53,5$ 80 $22,5$ $(10,6)_{4}$ $(10,5)_{5}$ $53,0$ $85,5$ $$ $85,5$ $68,0$ $51,5$ $57,5$ $57,5$ $$ $85,5$ $68,0$ $51,5$ $57,5$ $$ $81,5$ $68,0$ $51,5$ $75,5$ $75,5$ $$ $81,5$ $68,0$ $51,5$ $75,5$	50,0 82 24,5 (03,0) 56,5 87,5 86,0 69,5 53,5 179 49,0 80 22,5 (10,5) 53,0 85,5 85,5 68,0 69,5 53,5 173 47,5 78 21,0 (100,6) (100,5) 53,0 83,5 84,5 68,0 51,5 173 46,5 76 (19,0) 99,5 47,0 82,0 84,0 65,5 47,5 160 45,5 74 (17,5) 99,0 98,5 43,5 80,0 84,0 65,5 47,5 160 45,5 74 (17,5) 98,0 98,0 84,0 65,5 47,5 160 45,5 74 (17,5) 98,0 98,0 84,0 65,5 47,5 154 15,1		51,5	84	(2,0)		(1945)	(104,0)	59,5	89,0	61,5	26,5	(-0,5)	87,0	70,5	55,5	187
80 $22,5$ $32,6$ $100,6$ $51,5$ $53,0$ $85,5$ $85,5$ $68,0$ $51,5$ $51,5$ 78 $21,0$ $(100,6)^3$ <	49,0 80 22,5 (100,6) 53,0 85,5 0 85,5 68,0 51,5 173 47,5 78 21.0 [*] (100,6) ^a (100,5) 50,0 83,5 0 84,5 66,5 49,5 166 46,5 76 (19,0) 99,5 97,5 82,0 84,0 65,5 47,5 166 45,5 74 (17,5) 99,5 97,5 82,0 84,0 65,5 47,5 166 45,5 74 (17,5) 98,0 98,0 83,0 64,0 45,5 154 terpolation (17,5) 98,0 98,0 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154		50,0	82	:		(103,0)	(103,0)	56,5	87,5		:		86,0	69,5	53,5	179
78 21.0 \cdot (100,6) ^a (100,6) ^a (100,6) ^a (100,5) 50,0 83,5 84,5 66,5 49,5 49,5 76 (19,0) 99,5 99,5 47,0 82,0 84,0 65,5 47,5 74 (17,5) 98,0 98,5 43,5 80,0 83,0 64,0 45,5	47,5 78 21.0 $(100,6)a$ $(100,6$	I	49,0	80	:	22,5	(102,0)	(101,5)	53,0	85,5	:	:	:	85,5	68,0	51,5	173
76 (19,0) 99,5 99,5 47,0 82,0 84,0 65,5 47,5 74 (17,5) 98,0 98,5 43,5 80,0 83,0 64,0 45,5	46,5 76 (19,0) 99,5 97,0 82,0 84,0 65,5 47,5 160 45,5 74 (17,5) 98,0 98,5 43,5 80,0 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154 terpolation 83,0 64,0 45,5 154 terpolation 83,0 64,0 75 154	1	47,5	78	:		(100,6) ^a	(100,5)	50,0	83,5	:	:	:	84,5	66,5	49,5	166
74 (17,5) 98,0 98,5 43,5 80,0 83,0 64,0 45,5	45,5 74 (17,5) 98,0 98,5 43,5 80,0 83,0 64,0 45,5 154 terpolation store		46,5	76	:	(19,0)	99,5	99,5	47,0	82,0		:		84,0	65,5	47,5	160
	erpolation also for the hardness values shown in parentheses is not recommended since they are beyond the ranges recommended for accuracy. Such values are		45,5	74	:	(17,5)	98,0	98,5	43,5	80,0	:	:	:	83,0	64,0	45,5	154
		ŭ	ales for t	the hardne	ss values :	shown in p	arenthese	es is not re	ecommend	ed since th	iey are bey	yond the ra	inges reco	ommended	for accura	acy. Such v	alues are

							Table F.1 (continued)	l (continı	(pəi							
Η	HB						Roc	Rockwell Hardness Number	ness Num	ber						НК
HV1, HV5, HV10, HV30	HBS 10/3000	HRA	HRB	HRC	HRD	HRE	HRF	HRG	HRK	HR15N	HR30N	HR45N	HR15T	HR30T	HR45T	НК0,5, НК1
130	129	44,0	72	:	(16,0)	97,0	. 53,6	40,5	78,0	:	:	:	82,5	62,5	43,5	149
126	125	43,0	70	:	(14,5)	95,5	96.0	37,5	76'5	:	:	:	82,0	61,0	41,5	144
122	121	42,0	68		(13,0)	94,5	0.56	34'2	v⊆é†a∠ •	:	:	:	81,0	60,0	39,5	140
119	118	41,0	66		(11,5)	93,0	9 3,5	31,0	72,5	:	:	:	80,5	58,5	37,5	136
115	114	40,0	64	:	(10,0)	••	6		710			:	79,5	57,0	35,5	:
112	111	39,0	62	:	(8,0)	90,5	• • • • • • • • • • • • • • • • • • • •		0(69	• •		:	79,0	56,0	33,5	:
108	108		60					•	67,5	:	• • • • • • • •		78,5	54,5	31,5	:
106	106		58			88 U >	89,0		65.5		•••		77,5	53,0	29,5	:
103	103	:	56		:	• 90 5 •	• • 88,0		68,5				77,0	51,5	27,5	:
100	100	:	54		:	85,5°	• 8 7,0 *		62,0	• ::		: • •	76,0	50,5	25,5	:
98	68	:	52			84,0	85,5		60,0		:		75,5	49,0	23,5	:
95	95	:	50	:	:	83,0	84,5		• 58,0		:	:	74,5	47,5	21,5	:
93	93		48			81,5	83,5	•••	565		:		74,0	46,5	19,5	:
91	91		46		:	80,5 -			54.5	R	:		73,5	45,0	17,0	:
89	89		44			26,0,0	81,0		52,5		:		72,5	43,5	14,5	:
87	87	:	42	:	:	7.8,0	80,0	:	51,0	:	:	:	72,0	42,0	12,5	:
85	85	:	40	:	:	76,5	79,0	:	49,0	:	:	:	71,0	41,0	10,0	:
83	83	:	38	:	:	75,0	77,5	:	47,0	:	:	:	70,5	39,5	7,5	:
81	81	:	36	:	:	74,0	. 76,5	:	45,5	:	:	:	70,0	38,0	5,5	:
79	79		34	:		72.5		:	43,5	:	:	:	69,0	36,5	3,0	:
78	78		32			71,5	<pre></pre>	:	42,0	:	:	:	68,5	35,5	1,0	:
77	77	:	30	:	:	`70,0	73,Ò°	:	40,0	:	:	:	67,5	34,0		:
^a Recalculated in 2012 by interpolation	d in 2012 by	interpolat	ion													
The use of the hardness scales for the hardness values shown in parentheses is not recommended since they are beyond the ranges recommended for accuracy. Such values are	he hardness	scales for t	the hardné	ess values	shown in l	oarenthes.	es is not re	commende	ed since th	iey are bey	rond the r	anges reco	mmended	for accura	acy. Such va	alues are
shown for comparative purposes only, where comparisons may be desired and the recommended machine and scale are not available.	mparative p	urposes on	ily, where i	compariso	ns may be	desired ar	nd the reco	mmended	machine a	ind scale a	re not avai	lable.				

© ISO 2013 – All rights reserved

ISO 18265:2013(E)

(4)
Tabl€
-97,
140
TME
) (AS
Alloy
Zinc /
oer, 30 % Zinc Alloy) (ASTM E 140-97, Tabl
er, 3
Copp
70 % Coppe
ass (7
ge bra
trid
— Cart
le F.2 –
Table
_

ISO 18265:2013(E)	

			Rockwell Hardness Number			HB
НУ 30	HRB	HRF	HR15T	HR30T	HR45T	HBS10/500
196	93,5	110,0	90.0	77,5	66,0	169
194		109,5			65,5	167
192	93,0	:		77,0	65,0	166
190	92,5	109,0	: • •	76,5	64,5	164
188	92,0	:	89,5	:	64,0	162
186	91,5	108,5		76,0	63,5	161
184	91,0			75,5	63,0	159
182	90,5	108,0	89,0	:	62,5	157
180	0'06	107,5		74,5	62,0	156
178	89,0				61,5	154
176	88,5				61,0	152
174	88,0		88,5 ,	74,0	, 60,5	150
172	87,5			73,5	60,0	149
170	87,0				59,5	147
168	86,0	106,0	88,0	73,0	59,0	146
166	85,5	:		72,5	58,5	144
164	85,0	105,5		72,0	58,0	142
162	84,0	103,0	Co 7.4	: :	57,5	141
160	83,5			••• 71,5	56,5	139
158	83,0	104,5		, 71,0	56,0	138
156	82,0	104,0	87,0	70,5	55,5	136
154	81,5	103,5		70,0	54,5	135
152	80,5	103,0	:		54,0	133
150	80,0		86,5	69,5	53,5	131
148	79,0	162,500 - 000 182,500 - 000		69,0	53,0	129
146	78,0	102,0 • ;;••		68,5	52,5	128
144	77,5	101,5	86,0	68,0	51,5	126
142	77.0	101.0		67.5	51.0	124

						Ĩ
HV 30			Kockwell Haraness Number	-		HB
	HRB	HRF	HR15T	HR30T	HR45T	HBS10/500
140	76,0	100,5	85,5	67,0	50,0	122
138	75,0	100,0	:	66,5	49,0	121
136	74,5	99,5	85,0	66,0	48,0	120
134	73,5	0'66	· • • • • • • • • • • • • • • • • • • •	65,5	47,5	118
132	73,0	98,5	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	65,0	46,5	116
130	72,0	98,0	04. 04.	64,5	45,5	114
128	71,0	97,5		63,5	45,0	113
126	70,0	0'26	23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	63,0	44,0	112
124	69,0				43,0	110
122	68,0			62,0	42,0	108
120	67,0	• • • • • • • • • • • • • • • • • • •		61,0	· 41,0	106
118	66,0		82,5	60,5.	40,0	105
116	65,0	94,5	82,0	je drže	39,0	103
114	64,0	94,0	81,5	59,5	38,0	101
112	63,0	93,0		•••• 58,5	37,0	66
110	62,0	92,6		58,0	35,5	26
108	61,0	92,0		57,0	34,5	95
106	59,5	91,2	80,0	56,0	33,0	94
104	58,0	90,5	79,5	55,0	32,0	92
102	57,0	89,8	79,0	54,5	30,5	06
100	56,0	89,0	78,5	53,5	29,5	88
98	54,0	88,0	78,0	52,5	28,0	98
96	53,0	87,3	77,5	51,5	26,5	85
94	51,0	86, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	77,0	50,5	24,5	83
92	49,5	85,4	76,5	49,0	23,0	82
06	47,5	84,4	75,5	48,0	21,0	80
88	46,0	83,5	75,0	47,0	19,0	79
86	44,0	82,3	74,5	45,5	17,0	77
^a Recalculated in 2012 by interpolation	interpolation					

Table F.2 (continued)

(continued)
F.2
ble
Ta

			Rockwell Hardness Number			HB
HV 30	HRB	HRF	HRAST	HR30T	HR45T	HBS10/500
84	42,0	81,2		44,0	14,5	76
82	40,0	80,0	73,0	43,0	12,5	74
80	37,5	78,6	72,0	•••• •••• 41,0	10,0	72
78	35,0	77,4	71,5	39,5	7,5	70
76	32,5	76,0		380	4,5	68
74	30,0	74,8		•••••• •••••• 36,0 ••••	•••••••••••••••••••••••••••••••••••••••	66
72	27,5		• • • • • • • • • • • • • •			64
70	24,5	71,8 .	68,0	32,0		63
68	21,5	70,0	67,0			62
66	18,5	68,5	\$6,0		: • • (61
64	15,5	66,8	65,0	25,5	:	59
62	12,5	65,0	63,5	• • • • • • • • • • • • • • • • • • •	:	57
60	10,0	62,5	62,5		I	55
58	:	61,0	5 1,0		:	53
56		58,8	,	► ● ● ● ● ● ● ● ○ ● ● ● ● ● 5,0	:	52
54	:	56,5	58,5	12,0	:	50
52		53,5	57,0	Ξ		48
50		50,5	55,5		:	47
48		49,0	54,5	Ξ	:	46
47		47,0	53,5	Ξ		45
46		45,0	• • • • • • • • • • • • • • • • • • •	Ξ	:	44
45		40,0	ו 			42
^a Recalculated in 2012 by interpolation	interpolation					

4
妇死母女女女
4
4
1 1 1

表
换
度
硬
島
姚

Vickers Hardness Number	ardness ber	Knoop Hardness Num- ber	dness Num- er			Rc	Rockwell Hardness Number	ness Number				Brinell Hardness Number	ess Number
				HR15T	HR15T	HR30T	HRB	HRF	HR15T	HR30T	HR45T	HBS 10/500	HBS 2/20
HV1	HV0,1	HK1	HK0,5	Strip 0,25 mm	Strip 0,	Strip 0,51 mm			trip 1,02 mm	Strip 1,02 mm and greater		Strip 2,03 mm	Strip 1,02 mm
130	127,0	138,7	133,8	:	85,0	:	67,0	0'66	:	69,5	49,0	:	119,0
128	125,2	136,8	132,1	83,0	84,5	:	66,0	98,0	87,0	68,5	48,0	:	117,5
126	123,6	134,9	130,4	Ξ	84,0	• • • • • • • • • • • • • • • • • • • •	65,0	97,0		67,5	46,5	120,0	115,0
124	121,9	133,0	128,7	82,5	83,5		64,0	96,0	86,0	66,5	45,0	117,5	113,0
122	121,1	131,0	127,0	:	83,0		62,5	95,5	85,5	66,0	44,0	115,0	111,0
120	118,5	129,0	125,2	82,0	82,5		610	95,0		65,0	42,5	112,0	109,0
118	116,8	127,1	123,5	81,5		•••	595	94,0	85,0	64,0	41,0	110,0	107,5
116	115,0	125,1	121,7	:	82,0		000 010	\$93,0	:	63,0	40,0	107,0	105,5
114	113,5	123,2	119,9	81,0	31.5		220	92,5	84.5	62,0	38,5	105,0	103,5
112	111,8	121,4	118,1	80,5 ,	81,0			• • • • • • • • • • • • • • • • •			37,0	102,0	102,0
110	109,9	119,5	116,3	80,0		:	53,5		84,0	(60)0	36,0	99,5	100,0
108	108,3	117,5	114,5	:	30,5	:	52,0	9 0 5	83,5	0,62	34,5	67,0	98,0
106	106,6	115,6	112,6	79,5	80,0	۰۰۰۰ ۰۰۰۰	50,0	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		58,0	33,0	94,5	96,0
104	104,9	113,5	110,1	79,0	79,5		48,0	60 60 5	83,0	57,0	32,0	92,0	94,0
102	103,2	111,5	108,0	78,5	79,0	:	46.5	87,5	82,5	56,0	30,0	89,5	92,0
100	101,5	109,4	106,0	78,0	78,0			870	82,0	55,0	28,5	87,0	90,0
98	99,8	107,3	104,0	77,5	77,5	:	42,0	•6 •6 •6	• 81,0	53,5	26,5	84,5	88,0
96	98,0	105,3	102,1	77,0	77,0		40,0		80,5	52,0	25,5	82,0	86,6
94	96,4	103,2	100,0	76,5	76,5	•••	38,0	83,0	80,0	51,0	23,0	79,5	85,0
92	94,7	101,0	98,0	76,0	76,5	:	35,5	82,0	79,0	49,0	21,0	77,0	83,0
06	93,0	98,9	96,0	75,5	75,0	:	33,0	81,0	78,0	47,5	19,0	74,5	81,0
88	91,2	96'9	94,0	75,0	74,5	:	30,5	79,5	77,0	46,0	16,5	:	79,0
86	89,7	95,5	92,0	74,5	73,5-		28,0	78,0	76,0	44,0	14,0	:	77,0
84	87,9	92,3	90'0	74,0	73,D -	• • • • • •	25,5	76,5	75,0	43,0	12,0	:	75,0
82	86,1	90,1	87,9	73,5	¥2,0	•••	23,0	74,5	74,5	41,0	9,5	:	73,0
80	84,5	87,9	86,0	72,5	71,0	:	20,0	73,0	73,5	39,5	7,0	:	71,5
78	82,8	85,7	84,0	72,0	70,0	:	17,0	71,0	72,5	37,5	6,0	:	69,5

ed
ıtinu
cont
J
F.3
le
ab
F

 \sim

Vickers Hardness Number	ness	Knoop Hardness Num- ber	lness Num- :r			ß	Rockwell Hardness Number	lness Numbe	Тé			Brinell Hard	Brinell Hardness Number
				HR15T	HR15T	HR30T	HRB	HRF	HR15T	HR30T	HR45T	HBS 10/500	HBS 2/20
HV1 H	HV0,1	HK1	HK0,5	Strip 0,25 mm	Strip 0,51 mm	51 mm			Strip 1,02 mr	Strip 1,02 mm and greater		Strip 2,03 mm	Strip 1,02 mm
	81,0	83,5	81,9	71,5	69,5		. 14,5	69'0	71,5	36,0	2,0	:	67,5
	79,2	81,1	79,9	71,0	68,5		•••• <u>1</u> 1,5	67,5	70,0	34,0	:	:	66,0
	77,6	78,9	78,7	70,0	67,5		200 Tu	66,0	69'0	32,0	:	:	64,0
	75,8	76,8	76,6	69,5	66,5	-	.5,0,	64,0	67,5	30,0	:	:	62,0
	74,3	74,1	74,4	69,0	10 10 10		2,0 2,0	(((((((((((((((((((66,0	28,0	:	:	60,5
	72,6	71,9	71,9	68,0	64,5			60,02	645	25,5	:	:	58,5
	70,9	69,5	70,0	67,5		:		58,0	63.5	23,5	:	:	57,0
¢	69,1	67,0	67,9	66,5	62.0	:		56,0	61,0	21,0	:	:	55,0
	67,5	64,6	65,9	66,0	61,0	4 11		54,0	59,0	18,0	:	:	53,0
ę	65,8	62,0	63,8	65,0	60,0			51,5	57,0	15,5	:	:	51,5
ę	64,0	59,8	61,8	64,5	58,5	:		0'6	55,0	13,0	:	:	49,5
	62,3	57,4	59,5	63,5	525			47,0	53,0	10,0	:	:	48,0
ę	60,7	55,0	57,2	63,0	56,0			44,0	51,5	7,5	:	:	46,5
	58,9	52,8	55,0	62,0	\$5,0		:	41,5	49,5	4,5	:	:	44,5
(1)	57,3	50,3	52,7	61,0	53,5		:	39,0	47,5	1,5	:	:	42,0
5	55,8	48,0	50,2	60,5	52,0		:	36,0	45,0		:	:	41,0
	53,9	45,9	47,8	59,5	5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		:	33,5	43,0		:	:	:
<u>г</u> о	52,2	43,7	45,2	58,5	49,5		:	30,5	41,0		:	:	:
11	51,3	40,2	42,8	57,5	48,0	I	:	28,0	38,5		:	:	:

锻铝制品硬度换算表

Table F.4 — Wrought Aluminium Products (ASTM E 140-97, Table 9)

HBC10/E00	HV16			Rockwell Hardness Number	lness Number		
nnc/ntcqu	стан	HRB	HRE	нкн	HR15T	HR30T	HR15W
160	189	91	•		89	77	95
155	183	06			89	76	95
150	177	89		:	89	75	46
145	171	87			88	74	94
140	165	86			88	73	94
135	159	84	•		87	71	93
130	153	81					
125	147	26 <i>2</i>			,	68	92
120	141	76				67	92
115	135	72	101		86	65	91
110	129	69			•••••••••••••••••••••••••••••••••••••••	63	91
105	123	65	• 66			61	91
100	117	60	86			59	06
95	111	56	96		82	57	06
06	105	51	94		81	54	89
85	86	46		107	80	52	89
80	92	40		106 ****	78	50	88
75	86	34	84	104	76	47	87
70	80	28	80	102	74	44	86
65	74	:	75	100	72	÷	85
60	68	:	± ± 20	67	70	:	83
55	62	:	••••• • • • • • • • • • • • • • • • •	94	67	÷	82
50	56	:		91	64	:	80
45	50	:	• 53 •	87	62		79
40	44	:	46	83	59	:	77

HV10	HB (0,102 <i>F</i> / <i>D</i> ² = 5 or 10)	HRB
210	199,5	95,7
205	194,8	94,8
200	190,0	93,8
195	185,3	92,7
190	180,5	91,6
185	175,8	90,4
180	171,0	89,2
175	166,3	87,9
170	161,5	86,5
165	, , , 156,8	85,0
160	,	83,4
155	142,3	81,8
150	· · · · · · · · · · · · · · · · · · ·	80,0
145	137,8	78,1
140	133,0	76,1
135		• 73,9
130	· · · · · · · · · · · · · · · · · · ·	71,5
125	······································	69,0
120 ,	114,0	66,3
115	109,3	63,3
110	104,5	60,0
105	99,8	56,4
100	9510	• • • 52,5
98	98,1 (****	• • 50.8
96	91,2	49,1
94	89,3	47,2
92	87,4	45,3
90	85,5	43,3
88	83,6	41,3
86	81,7	39,1
84	79,8	36,8
82	77,9	34,4
80	76,0	31,9
78	74,1	
76	72,2	
74	70,3	
72	68,4	
70	66,5	
68	64,6	
	1	

Table F.5 — Aluminium and its Alloys (BS 860:1967, Table 1) 铝及铝合金硬度换算表

HV10	HB (0,102 <i>F</i> / <i>D</i> ² = 5 or 10)	HRB
64	60,8	
62	58,9	
60	57,0	
58	55,1	
56	53,2	
54	51,3	
52	49,4	
50	47-5	
48		
46	43.7	
44	41,8	
42 ,	39,9	
40	38,0	
38	36,1	
	34,2	/ • • • • · · · ·
34	32,3	
32	30 ,4	
30	28,5	
28	26,6	
26	24,7	
24	22,8	
22	20,9	
20	19,0	
18	17,1	

Table F.5 (continued)

Annex G

(informative)

Conversion tables for tool steels

The following conversion tables (<u>Tables G.1</u> and <u>G.2</u>) for two tool steels were established in 2007 under application of the valid test conditions in ISO 6506-1, ISO 6507-1 and ISO 6508-1.

WARNING — Hardness conversions are no substitute for direct measurements. These tables should be used with caution and only in accordance with the principles of conversions, see <u>Clause 2</u>.

Table G.1 — Conversion of hardness-to-hardness values and tensile strength for tool steel 1.1243
1.1243工具钢硬度-硬度换算值

ensile strength R _m , N/mm ²	HBW2,5/187,5	HV30	HRA	HRC
950	297	305	65,9	31,2
960	300	308	66,1	31,5
970	303	311	66,2	31,8
980	306	314	66,4	32,0
990	309	316	66,5	32,3
1 000	312	319	66,7	32,6
1 010	315 ′	322	66,8	32,9
1 020	318	325	67,0	33,2
1 030	321	328	67,1	33,4
1 040	324	331	, 67,3	33,7
1 050		333	67,4	34,0
1 060		336	67,6	34,3
1 070 🦼		339	67,7	34,6
1 080	335	342	67,9	34,8
1 090	338	345	68,0	35,1
1 100	341	347	68,2	, 35,4
1 110	344	350	68,3	35,7
1 120	347	353	68,5	36,0
1 130	350	· 356	68,6	36,2
1 140	353	359	68,8	36,5
1 150	356	362	68,9	36,8
1 160	359	364	69,1	37,1
1 170	362	367	69,2	37,4
1 180	365	370	69,4	37,6
1 190	368	373	69,5	37,9
1 200	371	376	69,7	38,2
1 210	374	378	69,8	38,5

Tensile strength <i>R</i> _m , N/mm ²	HBW2,5/187,5	HV30	HRA	HRC
1 220	377	381	70,0	38,8
1 230	380	384	70,1	39,0
1 240	382	387	70,3	39,3
1 250	385	390	70,4	39,6
1 260	388	392	70,6	39,9
1 270	391	395	70,7	40,2
1 280	394	398	70,9	40,4
1 290	397	401	71,0	40,7
1 300	400	404	71,2	41,0
1 310	403	407	71,3	41,3
1 320	406 ,	409	71,5	41,6
1 330	409	412	71,6	41,8
1 340	412 . '		71,8	42,1
1 350	415	418.	71,9	42,4
1 360	418 .	421	72,1	42,7
1 370	421	423	72,2	43,0
1 380		426	, 72,4	43,2
1 390	427	429,	72,5	43,5
1 400	430	432	72,7	43,8
1 410	432	435	72,8	44,1
1 420	•••••435	• 438	73,0	•••• 44,4
1 430	438	· • • • • • • • • • • • • • • • • • • •	73,1	44,6
1 4 4 0	441	•••••443	73,8	44,9
1 450	444	446	73,4	45,2
1 460	447	449	73,6	45,5
1 470	450	, 452	73,7	45,8
1 480	453	454	73,9	46,1
1 490	456	457	74,0	46,3
1 500	459	460	74,2	46,6
1 510	462	463	74,3	46,9
1 520	465	466	74,5	47,2
1 530	468	468	74,6	47,5
1 540	471	471	74,8	47,7
1 550	474	474	74,9	48,0
Function	$R_{\rm m} = f({\rm HBW})$	$R_{\rm m} = f({\rm HV})$	R _m =f(HRA)	R _m =f(HRC)
Standard deviation	15,7	16,4	20,6	23,3

Table G.1 (continued)

NOTE The values of the tension tests are not based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

Tensile strength <i>R</i> _m , N/mm²	HBW2,5/187,5]	HV30		HRA			HRC
880	279		280		62,9			27,7
890	282		283		63,5			28,2
900	285		286		63,9			28,7
910	288		289		64,3			29,2
920	291		292		64,7			29,7
930	294		295		65,0			30,1
940	296		298		65,3			30,6
950	299		300		65,6			31,0
960	302	• • • •	303		65,9			31,4
970	305		306		66,1			31,8
980	308		309		66,3			32,2
990	311	•••	312		66,6			32,6
1 000	314		315::::		66,8			32,9
1 010	316		318	•	67,0			33,3
1 020	319	* * * * * * * * * * * * * *	321	• • • • •	67,2			33,6
1 030	322		324		67,4			34,0
1 040	325	•••	327	•	67,6			34,3
1 050	<u> </u>		330	·	67,8			34,7
1 060	331		333		68,0			35,0
1 070	333		336		68,2		•••	35,3
1 080	336		339		68,3		• •	35,6
1 090	339	/ • • •	342		68,5		•	35,9
1 100	342	* * * * *	345	••••	68,7		•	36,2
1 110	345	••••	347	•	68,8		••、	36,5
1 120	348	••	350		69,0	_	~ ~ /	36,8
1 130	351	•	353		69,1			37,1
1 140	353		356		69,3			37,4
1 150	356		359		69,4			37,7
1 160	359		362		69,6			38,0
1 170	362		365		69,7			38,2
1 180	365		368		69,9			38,5
1 190	368		371		70,0			38,8
1 200	370		374		70,2			39,0
1 210	373		377		70,3			39,3
1 220	376		380		70,4			39,6
1 230	379		383		70,6			39,8
1 240	382		386		70,7			40,1
1 250	385		389		70,8			40,3

Table G.2 — Conversion of hardness-to-hardness values and tensile strength for tool steel 1.2714 1.2714工具钢硬度-硬度换算值

NOTE The values of the tension tests are not based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009

Tensile strength <i>R</i> _m , N/mm²	HBW2,5/187,5	HV30	HRA	HRC	
1 260	388	392	71,0	40,6	
1 270	390	395	71,1	40,8	
1 280	393	397	71,2	41,0	
1 290	396	400::.	71,3	41,3	
1 300	399	403	71,4	41,5	
1 310	402	406	71,6	41,7	
1 320	.405	409	71,7	42,0	
1 330		412	71,8	42,2	
1 340	410	415	71,9	42,4	
1 350	413	418	72,0	42,7	
1 360	416	421		42,9	
1 370	419	424	72,3	43,1	
	0 0	6 6 6 6 6 6 7 6 6 6			
Function	$R_m = f(HBW)$	$R_{\rm m} = f(HV)$	R _m =f(HRA)	R _m =f(HRC)	
Standard deviation	10,2	11,2	22,1	35,0	
NOTE The values of the tension tests are not based on method A (10.3 Testing rate based on close-loop control at the rate of the extension) in ISO 6892-1:2009					

Table G.2 (continued)

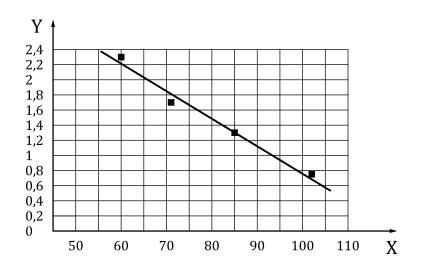
Annex H (informative)

Remarks on the effect of the changed test conditions

Because the test conditions which were applied for the tables in the <u>Annexes A</u> to <u>F</u> (in the period from approximately 1950 until approximately 1990) are not further valid in the present ISO standards, effects on the converted hardness values should be considered. These changed test conditions refer to

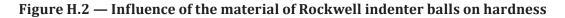
- a) the replacement of steel ball indenters by hardmetal ball indenters for the Rockwell and Brinell scales;
- b) the introduction of a shorter test force duration time for the Rockwell scales, which was reduced from 30 s to (4 ± 2) s.

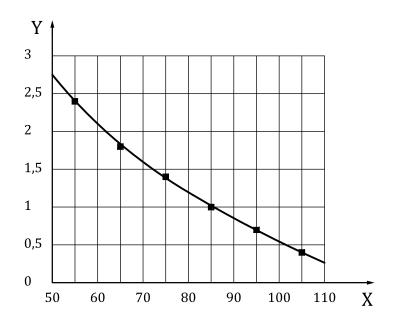
Preliminary investigations, which were carried out in Germany on hardness reference blocks (made from not or low alloyed steels), led to the results shown in Figures H.1 to H.5 for the effect of the changed test conditions.



Key

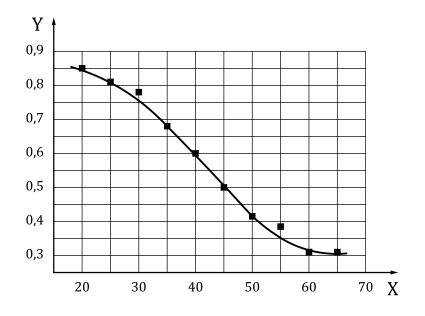
X Brinell hardness in HB


Y Hardness difference in using a steel ball as a carbide ball


Figure H.1 — Influence of the material of Brinell indenter balls on hardness

Key

- X Rockwell hardness in HRB
- Y Hardness difference in using a steel ball as a carbide ball

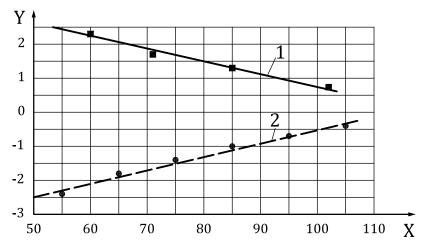


Кеу

X Rockwell hardness in HRB

Y Hardness difference in using 6 s as 30 s test force duration time

Figure H.3 — Influence of changed test force duration time at HRB



Key

Y Hardness difference in using 6 s as 30 s test force duration time

Figure H.4 — Influence of changed test force duration time at HRC

It should be noted that the combined influence of changed indenter ball material and of changed test force duration time at HRB obviously offset each other.

Key

- X Rockwell hardness in HRB
- Y Hardness difference in HRB
- 1 Hardness difference in using a steel ball as a carbide ball
- 2 Hardness difference in using 6 s as 30 s test force duration time

Figure H.5 — Influence of changed indenter ball material and of changed test force duration time at HRB

In summary, the following orders of magnitude of determined deviations due to changed test conditions for unalloyed or low alloyed steels were found in this investigation (see <u>Table H.1</u>).

X Rockwell hardness in HRC

Table H.1 — Order of magnitude of determined deviations due to changed test conditions for unalloyed or low alloyed steels found in this investigation

Hardness test method	HB 5/750	HRC	HRB
Changed indenter material	-40 HBW	-	2,3 HRB
Changed test force dura- tion time	-	0,6 HRC	-2,0 HRB

These results are only intended to raise the consciousness of the user of this International Standard toward the effects of the changed test conditions on the converted hardness value. In each actual case, the user should carry out corresponding comparative measurements as shown above. Other studies have shown differing magnitudes in the differences of the test results due to the changes in the ball material and test force duration, likely due to testing different alloys or using different testing conditions.

Bibliography

- [1] PTB-Bericht, PTB-F-10 February 1992. Eckhart, H. and Otto, M. Vergleichswerte Härte/Zugfestigkeit und Härtevergleichstabellen für Vergütungsstähle
- [2] SCHMIDT W.Vorsicht bei der Bewertung des Werkstoffverhaltens mit Hilfe nichtgenormter Härteprüfverfahren. Z. Draht 46 (1995) 5, S. 255
- [3] SCHMIDT W.Betrachtungen zur Umwertung von Härtewerten. VDI-Berichte Nr. 1194, 1995
- [4] HAHN F.Die Prüfung der Festigkeit harter Stähle im Zugversuch. Dissertation TU Berlin 1968
- [5] TGL 4393, Kaltarbeitsstähle, legiert, gewalzt, geschmiedet, gezogen
- [6] TGL 7571, Schnellarbeitsstähle, geschmiedet, warm gewalzt, gezogen
- [7] TGL 6547, Vergütungsstähle, Technische Bedingungen für Stabstahl, warmgewalzt und Freiformschmiedestücke
- [8] TGL 7975, Bandstahl
- [9] TGL 7965-02, Gesinterte Hartmetalle, Sorten, Anwendung
- [10] ISO 4957, Tool steels
- [11] DIN 17200, Vergütungsstähle Technische Lieferbedingungen (zurückgezogen und ersetzt durch EN 10083-1)
- [12] EN 10083-1, Quenched and tempered steels Part 1: Technical delivery conditions for stainless steels (contains A1:1996)
- [13] TGL 43212-01, Metalle, Härtenvergleichswerte, Allgemeine Festlegungen
- [14] TGL 43212-02, Metalle, Härtenvergleichswerte, Hartmetalle
- [15] TGL 43212-03, Metalle, Härtenvergleichswerte, Kaltarbeitsstähle
- [16] TGL 43212-04, Metalle, Härtenvergleichswerte, Schnellarbeitsstähle
- [17] ISO 4964, Steel Hardness conversions
- [18] ISO/TR 10108, Steel Conversion of hardness values to tensile strength values
- [19] Mitteilung Nr. 3:1980-03, Vergleichszahlen für Härtewerte bei Stahl (Europäische Gemeinschaft für Kohle und Stahl)
- [20] Mitteilung Nr. 4:1982-03, Umwertung von Härte (HB + HV) und Zugfestigkeit bei Stahl (Europäische Gemeinschaft für Kohle und Stahl)
- [21] Отто М. "Umwertung von Härtewerten", Tagungsband der Tagung Werkstoffprüfung. DVM, Berlin, 1999
- [22] ASTM E 140-97, Standard Hardness Conversion Tables for Metals
- [23] BS 860:1967, Tables for comparison of hardness scales
- [24] Stahlschlüssel (steel key). Verlag Stahlschlüssel Wegst GmbH, 10. Edition, 2001
- [25] ISO 6506-1, Metallic materials Brinell hardness test Part 1: Test method
- [26] ISO 6507-1, Metallic materials Vickers hardness test Part 1: Test method

- [27] ISO 6507-2, Metallic materials Vickers hardness test Part 2: Verification and calibration of testing machines.
- [28] ISO 6508-1, Metallic materials Rockwell hardness test Part 1: Test method
- [29] ISO 6508-2, Metallic materials Rockwell hardness test Part 2: Verification and calibration of testing machines and indenters
- [30] ISO 6892-1, Metallic materials Tensile testing Part 1: Method of test at room temperature
- [31] ISO 7500-1, Metallic materials Verification of static uniaxial testing machines Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system
- [32] ISO 9513, Metallic materials Calibration of extensometer systems used in uniaxial testing

ISO 18265:2013(E)

ICS 77.040.10 Price based on 85 pages

© ISO 2013 – All rights reserved